

October 19, 2012

Air Permits Initial Review Team (APIRT) Section, MC 161 Texas Commission on Environmental Quality 12100 Park 35 Circle, Building C, Third Floor Austin, Texas 78753

via FedEx

Subject: Oil and Gas Standard Permit Registration Burlington Resources Oil & Gas Company LP Genelle Unit A1 and B1 Karnes County, Texas CN602989436, RN106511355

Dear Mr. Johnny Bowers:

On behalf of Burlington Resources Oil & Gas Company LP (Burlington), TITAN Engineering, Inc. (TITAN) is submitting this Oil and Gas Standard Permit (SP) Registration to the Texas Commission on Environmental Quality (TCEQ) for operations at Genelle Unit A1 and B1 (the Site) located near Karnes City in Karnes County, TX. Upon authorization, this standard permit will authorize the following project:

- Six (6) controlled atmospheric condensate storage tanks and associated loading;
- Two (2) controlled atmospheric produced water storage tanks and associated loading;
- One (1) flare combustion control device; and,
- Piping and fugitive components.

TITAN and Burlington Resources believe that the Site and its associated air emissions meet the requirements of the TCEQ Non-Rule Standard Permit for Oil and Gas Handling and Production Facilities and 30 TAC §116.610, §116.611, §116.614, and §116.615. This Standard Permit Registration has been prepared in accordance with TCEQ guidance and includes the following attachments:

- Attachment 1 presents a process description, area map, receptor map, process flow diagram, and plot plan;
- Attachment 2 contains the applicable TCEQ forms and tables;
- Attachment 3 presents emission rate calculations;
- Attachment 4 describes how the Site qualifies for Standard Permit;
- Attachment 5 includes an impacts evaluation; and
- Attachment 6 includes supporting documentation.

Page 2 of 2

TITAN and Burlington would like to collectively thank you in advance for your review and concurrence with this Oil and Gas Standard Permit Registration. If you have any questions regarding the information presented in this letter and attachments, please do not hesitate to contact Mr. James Woodall at 832-486-6508 or james.woodall@conocophillips.com or me at 469-365-1168 or cchermak@titanengineering.com.

Sincerely,

TITAN Engineering, Inc.

Christina Chermak Project Manager

Attachments

Mr. George Ortiz, TCEQ Region 13 - San Antonio

Mr. James Woodall, Sr. Environmental Specialist, ConocoPhillips Company TCEQ Revenue Section, MC-214, Bldg. A, Third Floor, Austin, Texas 78753 (Form

OIL AND GAS STANDARD PERMIT REGISTRATION

CN602989436 RN106511355

Burlington Resources Oil & Gas Company LP Genelle Unit A1 and B1 Karnes County, Texas

Project No. 84800507-71.003

September 2012

ATTACHMENT 1 PROCESS/PROJECT DESCRIPTION

OIL AND GAS STANDARD PERMIT REGISTRATION

GENELLE UNIT A1 AND B1

BURLINGTON RESOURCES OIL & GAS COMPANY LP

ATTACHMENT 1 PROCESS/PROJECT DESCRIPTION

This Standard Permit registration is being submitted to authorize six (6) controlled atmospheric condensate storage tanks and associated loading, two (2) controlled atmospheric produced water storage tanks and associated loading, one (1) flare combustion control device, and piping and fugitive components (the Project) at the Site. Figure 1-1 is an area map showing the location of the Site and the surrounding area and Figure 1-2 is a map demonstrating the nearest receptor. Figure 1-3 is a process flow diagram for the Site and Figure 1-4 is a plot-plan of the site demonstrating the location of various equipment components.

Normal Operations

The Site has two (2) wells which will produce high pressure gas and liquids (condensate and water). The mixture extracted from the wells will first pass through a high pressure (HP) separator where the high pressure gas will be collected and sent to pipeline. Liquids from the HP separator will then pass to a low pressure (LP) separator. Low pressure gas off of the LP separator will go to sales as well, via a low pressure pipeline.

Pressurized liquids from the LP separator will be divided into both produced water and condensate streams. Condensate is routed to the condensate storage tanks (FINs [Facility Identification Number] TK-01, TK-02, TK-03, TK-04, TK-05 and TK-06) and water is routed to the produced water tanks (FIN TK-07 and TK-08). The emissions associated with the flash from the pressure change as well as the working/breathing emissions from all tanks are routed to a flare (FIN FL-1) and are captured and controlled at a 98% efficiency. As demonstrated in the calculations, assist gas is sent to the flare to ensure that the waste gas stream can sustain combustion.

The condensate and produced water tanks are loaded out periodically (FINs TRUCK1 and TRUCK2), emissions from which are also controlled by the flare (FIN FL-1). The Site will also emit emissions due to equipment component leaks (FIN FUG).

Scheduled Maintenance Startup and Shutdown Events

In accordance with TCEQ guidance and the non-rule Oil & Gas Standard Permit, a representation of planned Maintenance, Startup and Shutdown events are included in this Standard Permit registration in addition to the normal operating scenario.

It is conservatively planned that the flare will be down for maintenance 2% of the year. During this time, the well would be shut in and therefore gas and liquids would not be producing, but any liquids previously in storage tanks (FINs TK-01, TK-02, TK-03, TK-04, TK-05, TK-06, TK-07 and TK-08) would have standing losses emitted to atmosphere.

Additionally, during engine maintenance events at downstream sites the LP separator gas (FIN SEP-GAS) is sent to the flare (FIN FL-1) for combustion. This scenario is conservatively predicted to occur 6% of the year.

Attachment 3 contains emission rate calculations for the air emission sources and a summary of the Site's emission rates.

TITAN Engineering, Inc.

2801 Network Boulevard, Suite 200 Frisco, Texas 75034

Phone: (469) 365-1100 Fax: (469) 365-1199 www.titanengineering.com • www.apexcos.com

A Division of Apex Companies, LLC 1

Burlington Resources Oil & Gas Company LP **Standard Permit Registration** Genelle Unit A1 and B1 TITAN Project No. 84800507-71.003 September 2012

> from USGS Quadrangle Helena, Texas Ground Condition Depicted October 2011 Digital Data Courtesy of ESRI Online Datasets

TITAN Engineering, Inc.
2801 Network Boulevard, Suite 200
Frisco, Texas 75034
Phone: (469) 365-1100 Fax: (469) 365-1199 www.titanengineering.com • www.apexcos.com

A Division of Apex Companies, LLC 1

FIGURE 1-2 RECEPTOR MAP

Burlington Resources Oil & Gas Company LP **Standard Permit Registration** Genelle Unit A1 and B1 TITAN Project No. 84800507-71.003 September 2012

> from USGS Quadrangle Helena, Texas Ground Condition Depicted October 2011 Digital Data Courtesy of ESRI Online Datasets

ATTACHMENT 2 TCEQ FORMS AND TABLES

OIL AND GAS STANDARD PERMIT REGISTRATION

GENELLE UNIT A1 AND B1

BURLINGTON RESOURCES OIL & GAS COMPANY LP

TCEQ Use Only

TCEQ Core Data Form

For detailed instructions regarding completion of this form, please read the Core Data Form Instructions or call 512-239-5175.

SECTION 1: Gener	<u>ai iniormation</u>
1. Reason for Submission	(If other is checked please describe

	on (If other is checked please of ation or Authorization (Core Data			,		the program apt	olicatio	on)	
	ta Form should be submitted with				1 Oth	1		,	
	Describe Any Attachments: (e.						tc.)		
	Dil and Gas Standard Perm			,		,,			
3. Customer Reference		Follow this			4. Re	gulated Entity R	efere	nce Numbe	r (if issued)
CN 602989436		for CN or F Central	RN numbe Registry*		RN	106511355			
SECTION II: Cu	stomer Information								
5. Effective Date for Cus	stomer Information Updates (m	ım/dd/yyy	y)						
6. Customer Role (Propo	sed or Actual) – as it relates to the <u>F</u>	Regulated E	<u>ntity</u> liste	d on this	form. F	Please check only g	<u>ne</u> of	the following:	
☐ Owner ☐ Occupational Licensee	☐ Operator ☐ Responsible Party		wner & 0 oluntary			cant	ner:		
7. General Customer Inf	ormation								
	Upde (Verifiable with the Texas Secretion I is complete, skip to Se		ate)			✓ No C	-	•	Entity Ownership
8. Type of Customer:	☐ Corporation	□Ir	ndividual			Sole Propri	etorsh	nip- D.B.A	
☐ City Government	☐ County Government	□F	ederal G	overnm	ent	☐ State Gove	rnmer	nt	
Other Government	☐ General Partnership		imited Pa	artnersh	ip	Other:			
9. Customer Legal Nam	e (If an individual, print last name fir	st: ex: Doe,	John)	<u>lf nev</u> belov		omer, enter previo	ous Cu	<u>ıstomer</u>	End Date:
_									
10. Mailing Address:		State		711				7ID 1 4	
City		State		ZII				ZIP + 4	
11. Country Mailing Info	ermation (if outside USA)			12. E-Ma	ail Add	dress (if applicable,	1		
13. Telephone Number	14	. Extension	on or Co	ode		15. Fax N	u mb e	r (if applicab	le)
									,
16. Federal Tax ID (9 digits	s) 17. TX State Franchise Tax	(ID (11 digi	ts) 18	8. DUNS	Num	ber(if applicable)	19. T)	(SOS Filing	J Number (if applicable)
20. Number of Employe	es					21. Inde	epend	lently Owne	d and Operated?
0-20 21-100	□ 101-250 □ 251-500	☐ 501 ar	nd higher	r			□ \	es/es	□No
SECTION III: Re	egulated Entity Inform	nation							
22. General Regulated E	Entity Information (If 'New Regu	lated Entit	ty" is sele	ected be	low th	is form should be	acco	mpanied by	a permit application)
✓ New Regulated Entity	<u>_</u>	,		<u> </u>		lated Entity Infor			Change** (See below)
	**If "NO CHANGE" is checked a				to Sect	ion IV, Preparer Info	rmatio	n.	
	me (name of the site where the regu	llated action	n is taking	g place)					
Genelle Unit A1 and	B1								

24. Street Address of the Regulated	-								-				
Entity:		<u> </u>			_								
(No P.O. Boxes)	City			State		ZIP			ZIP + 4				
OF Mailing	600 N	Dairy Ashford	d 										
25. Mailing Address:	West	ake 3, #15012	2										
	City	Houston		State	TX	ZIP	77079)	ZIP + 4				
26. E-Mail Address:	jam	es.woodall@d	onocophil	lips.com									
27. Telephone Numb	er		28	. Extensio	n or Code	29.	. Fax Nu	ımber (if applica	ble)				
(832) 486-6508						832	2-486-6	6431					
30. Primary SIC Code	(4 digits)	31. Seconda	ry SIC Cod	e (4 digits)	32. Primary I (5 or 6 digits)	VAICS	Code	33. Sec (5 or 6 dig	ondar y NAIC ^{its)}	S Code			
1311						11111			_				
34. What is the Prima		ness of this enti	ty? (Pleas	e do not rep	eat the SIC or No	AICS de	scription.)					
Natural Gas Produc	ction												
0	T	s 34 - 37 addres											
35. Description to Physical Location:		MINTERSECT S. TURN RIGH								TX-80 FOR 4.7 ON LEFT.			
36. Nearest City			Co	unty			State		Nearest	ZIP Code			
Karnes City			Kai	rnes		17	ΓX		78118				
37. Latitude (N) In D	ecimal:				38. Longit	ude (W	/) In [ecimal:					
Degrees	Minutes		Seconds		Degrees			Minutes	Sec	conds			
28		56	2.	91	9	7		49		32.97			
39. TCEQ Programs ar				ite in the per	mits/registration nu	nhere th	at will be a	iffected by the upd	ator cubmitted o	n this form or the			
updates may not be made. If	VALUE DESCRI								ares additition o	ii tiils loilii oi ale			
□ Dam Safety □ Districts □ Edwards Aquifer □ Industrial Hazardous Waste □ Municipal Solid Waste													
☐ Dam Safety			k other and writ		he Core Data Form	instructi	ons for ad	ditional guidance.					
☐ Dam Safety ☑ New Source Review				_ Edwards	he Core Data Form	instructi	ons for ad	ditional guidance.		icipal Solid Waste			
		Districts		_ Edwards	he Core Data Form Aquifer	instructi	ons for ad ndustrial	ditional guidance.	te Mun	icipal Solid Waste			
	- Air [Districts]	_ Edwards	he Core Data Form Aquifer	instructi	ons for ad ndustrial	ditional guidance. Hazardous Was	te Mun	icipal Solid Waste			
✓ New Source Review Stormwater	Air [Districts OSSF Title V – Air]	Edwards Petroleur	he Core Data Form Aquifer m Storage Tank	instructi	ons for ad industrial PWS Used Oil	ditional guidance. Hazardous Was	te Mun	ge			
New Source Review	Air [☐ Districts ☐ OSSF]	Edwards Petroleur	he Core Data Form Aquifer	instructi	ons for ad industrial PWS Used Oil	ditional guidance. Hazardous Was	te Mun	ge			
✓ New Source Review ☐ Stormwater ☐ Voluntary Cleanup	- Air [Districts OSSF Title V – Air Waste Water		Edwards Petroleur	he Core Data Form Aquifer m Storage Tank	instructi	ons for ad industrial PWS Used Oil	ditional guidance. Hazardous Was	te Mun	ge			
New Source Review Stormwater Voluntary Cleanup	-Air [Districts OSSF Title V - Air Waste Water		Edwards Petroleur	he Core Data Form Aquifer m Storage Tank water Agriculture	instructi	ons for ad ndustrial PWS Used Oil Water Ri	ditional guidance. Hazardous Was	te	ge ities			
Stormwater Stormwater Voluntary Cleanup SECTION IV: 1 40. Name: James	-Air [Districts OSSF Title V – Air Waste Water rer Information	C ation	Edwards Petroleur Tires Waster	he Core Data Form Aquifer m Storage Tank water Agriculture	instructi	ons for ad ndustrial PWS Used Oil Water Ri	ditional guidance. Hazardous Was ghts Environmer	te	ge ities			
New Source Review Stormwater Voluntary Cleanup	-Air [Districts OSSF Title V - Air Waste Water	C ation	Edwards Petroleur	he Core Data Form Aquifer m Storage Tank water Agriculture 41	Title:	ons for ad ndustrial PWS Used Oil Water Ri Sr. ail Addr	ditional guidance. Hazardous Was ghts Environmer	te	ge ities			
Stormwater Stormwater Voluntary Cleanup SECTION IV: 1 40. Name: James 42. Telephone Number (832) 486-6508	-Air [Districts OSSF Title V – Air Waste Water rer Information all 43. Ext./Code N/A	ation 44. F	Edwards Petroleur Tires Waster	he Core Data Form Aquifer m Storage Tank water Agriculture 41	Title:	ons for ad ndustrial PWS Used Oil Water Ri Sr. ail Addr	ghts Environmer	te	ge ities			
Stormwater Stormwater Voluntary Cleanup SECTION IV: 1 40. Name: James 42. Telephone Number (832) 486-6508 SECTION V: A 46. By my signature and that I have signature updates to the ID number	Prepa Wood: Autho below, ure authobers id	Districts OSSF Title V – Air Waste Water rer Information Bill 43. Ext./Code N/A rized Signa I certify, to the incrity to submit entified in field	ation 44. F ture best of my this form of 39.	Edwards Petroleur Tires Waster ax Number	Aquifer Aquifer m Storage Tank water Agriculture 41 ge, that the infof the entity specific specif	Title: 5. E-M mes.v	ons for ad Industrial PWS Used Oil Water Ri Sr. ail Addr woodal on proved in Sec	ghts Environmer ress I@conocoph	Util Other	ge ities ir:			
Stormwater Stormwater Voluntary Cleanup SECTION IV: 1 40. Name: James 42. Telephone Number (832) 486-6508 SECTION V: A 46. By my signature and that I have signature and that I have signature and that I have signature and the ID num (See the Core Data F	Prepa Woode Autho below, ure autho betrom ins	Districts OSSF Title V - Air Waste Water rer Information all 43. Ext./Code N/A rized Signa I certify, to the lacity to submit entified in field structions for many contents.	ation 44. F ture best of my this form of 39. nore inform	Edwards Petroleur Tires Waster ax Number	he Core Data Form Aquifer m Storage Tank water Agriculture 41 gr 4 ja ge, that the infoof the entity sy who should so	Title: 5. E-M mes.v	ons for ad ndustrial PWS Used Oil Water Ri Sr. ail Addr woodal on prov d in Sec.	ghts Environmer less l@conocoph	te	ge ities ir: list and complete, required for the			
Stormwater Stormwater Voluntary Cleanup SECTION IV: 1 40. Name: James 42. Telephone Number (832) 486-6508 SECTION V: A 46. By my signature and that I have signature and I have signature	Prepa Woods Autho below, ure autho bers id form in:	Districts OSSF Title V - Air Waste Water rer Information all 43. Ext./Code N/A rized Signa I certify, to the laterity to submit entified in field structions for many response of the control of t	ation 44. F ture best of my this form of 39. nore inform	Edwards Petroleur Tires Waster ax Number	he Core Data Form Aquifer m Storage Tank water Agriculture 41 ge, that the infof the entity sp who should s.	Title: 5. E-M mes.v	ons for ad ndustrial PWS Used Oil Water Ri Sr. ail Addr woodal on prov d in Sec.	ghts Environmentess [@conocophetion II, Field]	te	ge ities ities ities ities ities ities ond complete, required for the			
Stormwater Stormwater Voluntary Cleanup SECTION IV: 1 40. Name: James 42. Telephone Number (832) 486-6508 SECTION V: A 46. By my signature and that I have signature and I have signature	Prepa Woode Autho below, ure autho betrom ins	Districts OSSF Title V - Air Waste Water rer Information all 43. Ext./Code N/A rized Signa I certify, to the laterity to submit entified in field structions for many response of the control of t	ation 44. F ture best of my this form of 39. nore inform	Edwards Petroleur Tires Waster ax Number	he Core Data Form Aquifer m Storage Tank water Agriculture 41 gr 4 ja ge, that the infoof the entity sy who should so	Title: 5. E-M mes.v	ons for ad ndustrial PWS Used Oil Water Ri Sr. ail Addr woodal on prov d in Sec.	ghts Environmer less l@conocoph	te	ge ities ities ities ities ind complete, required for the ons-GCBU 6508			

2-2

Texas Commission on Environmental Quality Form PI-1S Registrations for Air Standard Permit (Page 1)

I. Registrant Information									
A. Is a TCEQ Core Data Form (TCE Core Data Form required for Star			6008, and	1 6013.		X YES NO			
Customer Reference Number (CN): Cl	N602989436								
Regulated Entity Number (RN): RN10	6511355								
B. Company or Other Legal Custom	ner Name (must be same a	s Core l	Data "Cu	stomer"):					
Burlington Resources Oil & Gas Company	LP								
Company Official Contact Name: Rand	ly Black								
Title: Manager of Production Operation	ns- GCBU								
Mailing Address: 600 N Dairy Ashford, \	Westlake 3, #15012								
City: Houston	State: TX			ZIP Code: 770	079				
Phone No.: 832-486-6508	Fax No.: 832-486-6431		E-mail.	Address; randy.	.c.blacl	k@conocophillips.com			
C. Technical Contact Name: James	Woodall								
Title: Sr. Environmental Specialist									
Mailing Address: 600 N Dairy Ashford, \	Westlake 3, #15012								
City: Houston	State: TX			ZIP Code: 770	079				
Phone No.: 832-486-6508	Fax No.: 832-486-6431		E-mail A	Address: james.	.wooda	all@conocophillips.com			
D. Facility Location Information (Street Address):									
If no street address, provide clear drivir	ng directions to the site in	writing	:						
FROM INTERSECTION TX-123 A									
City: Karnes City	County: Karnes			ZIP Code: 781	118				
Latitude (nearest second): 28°56'2.91"N	Lor	ngitude ((nearest s	second): 97°49	'32.97	"W			
II. Facility and Site Information	•								
A. Name and Type of Facility: Gene	elle Unit A1 and B1				Perma	anent Portable			
B. Type of Action: Initial App	olication Renewal	Ch	nange to l	Registration					
Registration N	lo.:	☐ Ex	piration	Date:					
C. List the Standard Permit Claimed	: 6002								
Description: Oil and Gas Facilities									
D. Concrete Batch Plant Standard Po	ermit: (Check one)								
Central Mix Ready Mix Spo	ecialty Mix 🔲 Enhanced	Contro	ls for Co	ncrete Batch P	lants				

 $TCEQ-10370~(Revised~08/11)~Form~PI-1S\\ This form~is~for~use~by~facilities~subject~to~air~quality~permit~requirements~and~may~be~revised~periodically.~(APDG~5235v12)$

Texas Commission on Environmental Quality Registrations for Air Standard Permit PI-1S

(Page 2)

E. Proposed Start of Construction: NA Length of Time at the Site:								
F. Is there a previous Standard Exemption or Permit by Rule for the facilities in this registration? (Attach details regarding changes) ☐ YES ☒ NO)							
If "YES," list Permit No.:								
G. Are there any other facilities at this site which are authorized by an air Standard Permit? ☐ YES ☒ NO								
If "YES," list Permit No.:								
H. Are there any other air preconstruction permits at this site? ☐ YES ☒ NO								
If "YES," list Permit No.:								
Are there any other air preconstruction permits at this site that would be directly associated with this project?								
If "YES," list Permit No.:								
I. TCEQ Account Identification Number (if known):								
J. Is this facility located at a site which is required to obtain a federal operating permit pursuant to 30 TAC Chapter 122? ☐ YES ☒ NO ☐ To Be Determined								
K. Identify the requirements of 30 TAC Chapter 122 that will be triggered if this Form PI-1S application is appro	ved.							
Application for an FOP FOP Significant Revision FOP Minor								
☐ Operational Flexibility/Off-Permit Notification ☐ Streamlined Revision for GOP								
☐ To Be Determined ☒ None								
L. Identify the type(s) issued and/or FOP application(s) submitted/pending for the site. (check all that apply)								
SOP GOP GOP Application/Revision Application: Submitted or Under APD Review								
SOP Application Review Application: Submitted or Under APD Review								
III. Fee Information								
A. Is a copy of the check or money order attached?								
Check/Money Order/Transaction Number 25041								
Company name on Check: TITAN Engineering, Inc.								
Fee Amount: \$850.00								

TCEQ-10370 (Revised 08/11) Form P1-1S This form is for use by facilities subject to air quality permit requirements and may be revised periodically. (APDG 5235v12)

Texas Commission on Environmental Quality Registrations for Air Standard Permit

PI-1S (Page 3)

IV.	Public Notice (If Applicable)			
A.	Is the plant located at a site contig	guous or adjacent to the public works pro	ject?	☐ YES ☐ NO
B.	Name of Public Place:			
Physi	cal Address:			
City:		County:		
C.	Small Business Classification:	•		☐ YES ☐ NO
D.		ced controls, permanent rock crushers, as e application at the appropriate TCEQ re		cinerators shall place
E.	Please furnish the names of the st	ate legislators who represent the area wh	ere the facility site i	s located:
State	Senator:			
State	Representative:			
F.	For Concrete Batch Plants, name	of the County Judge for this facility site:		
Coun	ty Judge:			
Maili	ng Address:			
City:		State:	ZIP Code:	
G.	For Concrete Batch Plants, is the jurisdiction of a municipality?	facility located in a municipality and/or	extraterritorial	☐ YES ☐ NO
If "Y	ES," list the name(s) of the Presidi	ng Officer(s) for the municipality and/or	extraterritorial juris	diction:
Title:				
Maili	ng Address:			
City:		State:	ZIP Code:	
V.		ing State and Federal Regulatory Req nce with all applicable state and federa		andards to claim a
A.	Is confidential information submi-	tted and properly marked with this regist	ration?	☐ YES ☒ NO
B.	Is a process flow diagram and a p	rocess description attached?		ĭ YES ☐ NO
C.	Is a plot plan attached?			ĭ YES ☐ NO
D.	Are emissions data and calculation	ns for this claim attached?		X YES □ NO
E.	Is information attached showing b (30 TAC § 116.610 and 116.615)	now the general requirements and applica are met?	bility	ĭ YES □ NO
F.	Is information attached showing h	now the specific requirements are met?		ĭ YES ☐ NO

TCEQ-10370 (Revised 08/11) Form P1-1S This form is for use by facilities subject to air quality permit requirements and may be revised periodically. (APDG 5235v12)

Texas Commission on Environmental Quality Form PI-1S General Application for Air Permit Renewals (Page 4)

VI. Signature Requirements
The signature below indicates that I have knowledge of the facts herein set forth and that the same are true and correct to the best of my knowledge and belief. I further state that to the best of my knowledge and belief, the project for which application is made will not in any way violate any provision of the Texas Water Code (TWC), Chapter 7, Texas Clean Air Act (TCAA), as amended, or any of the air quality rules and regulations of the Texas Commission on Environmental Quality or any local governmental ordinance or resolution enacted pursuant to the TCAA. I further state that I have read and understand TWC §§ 7.177 7.183, which defines <i>Criminal Offenses</i> for certain violations, including intentionally or knowingly making or causing to be made false material statements or representations in this application, and TWC §§ 7.187, pertaining to <i>Criminal Penalties</i> .
Name:
Signature: Original Signature Required
Date: 10/8/12

TCEQ-10370 (Revised 08/11) Form PI-1S
This form is for use by facilities subject to air quality permit requirements and may be revised periodically. (APDG 5235v12)

CASH ONLY IF ALL CheckLock™ SECURITY FEATURES LISTED ON BACK INDICATE NO TAMPERING OR COPYING

TITAN ENGINEERING, INC. 2801 NETWORK BLVD, SUITE 200 FRISCO, TX 75034

BANK OF TEXAS, NA DALLAS, TX 32-1432/1110

25041

10/16/2012

PAY TO THE ORDER OF

TCEQ

**850.00

Eight Hundred Fifty and 00/100*******

DOLLARS

Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087

VOID AFTER 90 DAYS

Agency Fee: 84800507-71.003

#*O 25041# #:111014325# #*BO92671152#

TITAN ENGINEERING, INC.

25041

TCEQ

Date Type 10/16/2012 Bill

Reference 84800507-71.003 Original Amt. 850.00

Balance Due 850.00

10/16/2012 Discount

Payment 850.00

Check Amount

850.00

Bank of Texas Operati Agency Fee: 84800507-71.003

850.00

Texas Commission on Environmental Quality

OGS New Project Notification for New Registration

Site Information (Regulated Entity)

What is the name of the site to be authorized?

GENELLE UNIT A1 AND B1

Does the site have a physical address?

County KARNES

Latitude (N) (##.#####) 28.934141

Longitude (W) (-###.#####) -97.825824

Primary SIC Code 1311

Secondary SIC Code

Primary NAICS Code 211111

Secondary NAICS Code

Regulated Entity Site Information

What is the Regulated Entity's Number (RN)?

What is the name of the Regulated Entity (RE)?

GENELLE UNIT A1 AND B1

Does the RE site have a physical address?

Because there is no physical address, FROM INTERSECTION TX-123 AND TX-80 IN

describe how to locate this site: KARNES CITY, TX., TRAVEL EAST ON TX-80 FOR 4.7 MILES. TURN RIGHT ONTO FM 792

AND TRAVEL 0.2 MILES. LEASE ROAD WILL

BE ON LEFT.

City Karnes City

State TX

ZIP 78118

County KARNES

Latitude (N) (##.#####) 28.934141

Longitude (W) (-###.#####) -97.825824

What is the primary business of this entity?

Natural Gas Production

Burling-Customer (Applicant) Information

How is this applicant associated with this site?

Owner Operator

What is the applicant's Customer Number CN602989436

(CN)?

Type of Customer Corporation

Full legal name of the applicant:

Legal Name Burlington Resources Oil & Gas Company LP

Texas SOS Filing Number 14500511

Federal Tax ID

State Franchise Tax ID 32003073841

DUNS Number 131117566

Number of Employees 501+

Independently Owned and Operated?

I certify that the full legal name of the entity

Yes

applying for this permit has been provided and is legally authorized to do business in Texas.

Responsible Authority Contact

Organization Name Burlington Resources Oil & Gas Company LP

Prefix MR

First James

Middle

Last Woodall

Suffix

Title Sr. Environmental Specialist

Responsible Authority Mailing Address

Enter new address or copy one from list:

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if 600 N DAIRY ASHFORD ST

applicable)

Routing (such as Mail Code, Dept., or Attn:) Westlake 3, #15012

City HOUSTON

State TX

ZIP 77079

Phone (###-###-) 8324866508

Extension

Alternate Phone (###-###-###)

Fax (###-###) 8324866431

E-mail james.woodall@conocophillips.com

Responsible Official Contact

Person TCEQ should contact for questions

about this application:

Same as another contact?

Organization Name Burlington Resources Oil & Gas Company LP

Prefix MR

First Randy

9/17/12 Copy of Record

Middle

Last

Suffix

Title Manager of Production Operations GCBU

Enter new address or copy one from list: Burlington Resources Oil & Gas Company LP

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if 600 N DAIRY ASHFORD ST

applicable)

Routing (such as Mail Code, Dept., or Attn:)

Westlake 3, #15012

City HOUSTON

State TX ZIP 77079

Phone (###-######) 8324866508

Extension

Alternate Phone (###-###-###)

Fax (###-###+##) 8324866431

E-mail randy.c.black@conocophillips.com

Technical Contact

Person TCEQ should contact for questions

about this application:

Same as another contact? Burlington Resources Oil & Gas Company LP

Organization Name Burlington Resources Oil & Gas Company LP

Prefix MR

First James

Middle

Last

Suffix

Title Sr. Environmental Specialist

Enter new address or copy one from list: Burlington Resources Oil & Gas Company LP

Mailing Address

Address Type Domestic

Mailing Address (include Suite or Bldg. here, if 600 N DAIRY ASHFORD ST

applicable)

Routing (such as Mail Code, Dept., or Attn:) Westlake 3, #15012

City HOUSTON

State TX

 ZIP
 77079

 Phone (###-###-####)
 8324866508

 Extension
 Alternate Phone (###-####)

 Fax (###-###-####)
 8324866431

 E-mail
 james.woodall@conocophillips.com

OGS New Project Notification

1) Select the authorization this site or changes to this site will most likely be authorized under based on expected worst-case operations (including planned MSS activities if MSS emissions are being registered with this project).

6002 - NON RULE 2011-FEB-27

2) What is the lease name submitted to the Railroad Commission (RRC)? If there are well(s) co-located with the site, include the well number(s) assigned by the RRC.

NA

3) Provide a brief process description for this site or description of changes to this site.

The production site extracts natural gas from the wellheadS and sends down the pipeline for processing. Hydrocarbon liquids are collected on site and trucked off periodically.

4) What is the site's latitude? (North)

28.934141

5) What is the site's longitude? (West)

-97.825824

6) What method was used to determine the site's latitude and longitude?

Мар

7) Does this business qualify as a small business, non-profit organization, or small

No

government entity?

Signature

The signature below indicates to the best of my knowledge that the information submitted is true and complete, and that I have signature authority to submit this application on behalf of the regulated entity.

- 1. I am James Woodall, the owner of the STEERS account ER020324.
- 2. I have the authority to sign this data on behalf of the applicant named above.
- 3. I have personally examined the foregoing and am familiar with its content and the content of any attachments, and based upon my personal knowledge and/or inquiry of any individual responsible for information contained herein, that this information is true, accurate, and complete.
- 4. I further certify that I have not violated any term in my TCEQ STEERS participation agreement and that I have no reason to believe that the confidentiality or use of my password has been compromised at any time.
- 5. I understand that use of my password constitutes an electronic signature legally equivalent to my written

9/17/12 Copy of Record

signature.

- 6. I also understand that the attestations of fact contained herein pertain to the implementation, oversight and enforcement of a state and/or federal environmental program and must be true and complete to the best of my knowledge.
- 7. I am aware that criminal penalties may be imposed for statements or omissions that I know or have reason to believe are untrue or misleading.
- 8. I am knowingly and intentionally signing OGS New Project Notification for New Registration.

9. My signature indicates that I am in agreement with the information on this form, and authorize its submittal to the TCEQ.

OWNER OPERATOR Signature: James Woodall OWNER OPERATOR

Account Number: ER020324

Signature IP Address: 138.32.80.20
Signature Date: 2012-09-17

Signature Hash: AA06BD67D3B72ED49336BE1B65B794CDB78BFA0ECB7C0D5E82BDCEE54CEC562C

Form Hash Code at

EEEAF1991C1A503CA2847FDDEC859DE7B95D9703AEA4F69E9DB830C3FDED5530

time of Signature:

Fee Payment

Transaction by: The application fee payment transaction was

made by ER025071/Christina I Chermak

Paid by: The application fee was paid by CHRISTINA

CHERMAK

Fee Amount: \$50.00

Paid Date: The application fee was paid on 2012-09-17

Transaction/Voucher number: The transaction number is 582EA000127437

and the voucher number is 161489

Submission

Reference Number: The application reference number is 54359

Submitted by: The application was submitted by

ER025071/Christina I Chermak

Submitted Timestamp: The application was submitted on 2012-09-17

at 14:12:30 CDT

Submitted From: The application was submitted from IP

address 12.237.12.100

Confirmation Number: The confirmation number is 59790

Steers Version: The STEERS version is 5.81

Additional Information

Application Creator: This account was created by Christina I Chermak

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Table 1(a) Emissions Point Summary

											ľ					
Permit Number:	- 1				RN Number: RN106511355	RN10651	1355					Date: S	September 2012			
Company Name:	Burlington Resources Oil & Gas Company LP	Company LP														
Review of applicat	tions and issuance of permits will be ex	Review of applications and issuance of permits will be expedited by supplying all necessary information requested on this Table.	nation requested on this?	Table.												
		AIR CONTAMINANT DATA							EMIS	SION POINT	DISCHARGE	EMISSION POINT DISCHARGE PARAMETERS	RS			
				3. Air Contaminant	taminant	4	4. UTM Coordinates of	nates of					Source			
	1 Emission Point	*	2. Component or	Emission Rate	n Rate		Emission Point	ji	v.	.9	7.	7. Stack Exit Data		8	8. Fugitives	8
			Air Contaminant Name	Pounds			East	North	Building	Height Above	Diameter	Velocity	Tempera- ture	Length	Width	Axis
EPN (A)	FIN (B)	NAME (C)		per Hour (A)	TPY (B)	Zone	(meters)	(meters)	(ft)	Ground (ft)	€€	(fps)	£ 0	€ €	£ £	Degrees (C)
Normal Operations	S															
FUG	FUG	Site Fugitives	voc	1.06	4.66	14	:		:	3.0			1	519	315	120
			Benzene	0.004	0.01											
			H ₂ S	0.0004	0.001											
FL-1	TK-01	Controlled Condensate Tank Emissions VOC	VOC	4.14	11.43	14	,		;	30.0			:	;	,	:
	TK-02		Benzene	0.01	0.02											
	TK-03		H ₂ S	0.0004	0.002											
	TK-04															
	TK-05															
	TK-06															
FL-1	TK-07	Controlled PW Tank Emissions	VOC	60:0	0.34	14				30.0	1	,	:	1	,	1
	TK-08		Benzene	0.0002	0.001											
			II,S	0.00002	0.0001											
FL-1	TRUCKI	Controlled Condensate Truck Loading VOC	VOC	66'0	0.94	14	:	1	1	30.0	ı		1	1	1	1
			Benzene	0.003	0.002											
FL-1	TRUCK2	Controlled Produced Water Truck	VOC	0.48	61.0	14	,		1	30.0	ı	1	1	1	,	1
		Loading	Benzene	0.001	0.0004											
FL-1	FL-1	Flare Combustion (normal operations	00	2.99	17.71	14	L		1	30.0		:	-	1	1	1
		waste gas, assist, and pilot)	NO _X	1.50	3.85											
			SO ₂	0.07	0.30											
			H ₂ S	0.001	0.004											
			VOC	0.01	0.04											
			Benzene	0.000003	0.00001											

TCRQ-10133 (Revised 01-13-03)

Tabe 1 (0) - Emission Point Summary - These forms are for use by sources subject to the New Source Review Program and may be revised [ANSRG9545/026-02]

TEXAS COMMISSION ON ENVIRONMENTAL QUALITY

Table 1(a) Emissions Point Summary

ATTACHMENT 3 EMISSION RATE CALCULATIONS

OIL AND GAS STANDARD PERMIT REGISTRATION

GENELLE UNIT A1 AND B1

BURLINGTON RESOURCES OIL & GAS COMPANY LP

TABLE 3-1
SUMMARY OF PROPOSED ALLOWABLE EMISSION RATES
OIL & GAS STANDARD PERMIT REGISTRATION
GENELLE UNIT A1 AND B1
BURLINGTON RESOURCES OIL & GAS COMPANY LP

								,		3							
								Prop	Proposed Allowable Hourly and Annual Emission Rates	ble Hourly	and Annua	al Emission	Kates				
				00	0	NOX	×	PM/PM ₁₀ /PM _{2.5}	PM _{2.5}	SO_2		VOC	* \	Benzene	zene	H_2S	
EPN	FI	FIN Des	Description	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr) _	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)	(lb/hr)	(T/yr)
Normal Operations	ions																
FUG	FUG	Site Fugitives		1	1	-	-	1			+	1.06	4.66	0.004	0.01	0.0004	0.001
	TK-01																
FL-1	TK-03	Controlled Condensate Tank Emissions	ank Emissions	1	1	ı	ı	ı	1	1	1	4.14	11.43	0.01	0.02	0.0004	0.002
	TK-05																
	TK-06																
FL-1	TK-07 TK-08	Controlled PW Tank Emissions	issions	1	ŀ	1	ı	ı	ı	ı	1	0.09	0.34	0.0002	0.001	0.00002	0.0001
FL-1	TRUCK1	Controlled Condensate Truck Loading	ruck Loading	1	1	1	1	1	1	1	1	66.0	0.94	0.003	0.002	1	1
FL-1	TRUCK2	Controlled Produced Water Truck Loading	ter Truck Loading	1	1	1	1	1			1	0.48	0.19	0.001	0.0004	1	1
FL-1	FL-1	Flare Combustion (normal operations waste gas and pilot)	al operations waste gas, assist,	2.99	7.71	1.50	3.85	1	1	0.07	0.30	0.01	0.04	0.000003	0.00001	0.001	0.004
Scheduled Mair	ntenance. Starti	Scheduled Maintenance. Startin and Shirtdown Events															
FL-1	SEP-GAS	Low Pressure Separator Gas to Flare	Gas to Flare	;	+	1	ı	ł	;	;	1	90.76	25.51	0.35	60.0	90.0	0.02
FL-1	FL-1	Flare Combustion (lp separator waste gas)	arator waste gas)	57.46	15.10	28.78	7.56	1	1	5.42	1.81	1	1	1	1	90.0	0.02
TK-01	TK-01																
TK-02	TK-02																
TK-03	TK-03	Uncontrolled Condensate Tank Standing Loss	Tank Standing Loss									1 03	07.0	000	0000		
TK-04	TK-04	Emissions (during flare downtime)	lowntime)	ŀ	ı	:		í	!	1	!	70.7	60.0	70.0	0.002	:	1
TK-05	TK-05																
TK-06	TK-06																
TK-07	TK-07	Uncontrolled PW Tank Standing Loss Emissions	standing Loss Emissions												1000000		
TK-08	TK-08	(during flare downtime)		!	1	!	1	:	!		!	0.002	0.0002	0.000004	0.0000004	:	1
			Site-Wide Emissions:	60.45	22.81	30.28	11.41	0.00	0.00	5.49	2.11	111.65	43.80	0.39	0.13	0.12	0.05

CALCULATION OF SITE FUGITIVES (FIN FUG) POTENTIAL TO EMIT OIL & GAS STANDARD PERMIT REGISTRATION

BURLINGTON RESOURCES OIL & GAS COMPANY LP GENELLE UNIT A1 AND B1

		Emission	Annual Operating	Maximum	Maximum	Maximum	Reduction	PTE	PTE VOC	PTE Benzene	enzene	PTE	PTE H ₂ S
Component	Number of Components	Factors a (b/hr-component)	Hours (hr/vr)	VOC ^a (wt%)	Benzene ^a (wt%)	H ₂ S (wt%)	Credit a	Hourly ^b (lb/hr)	Annual ° (T/vr)	Hourly ^b (lb/hr)	Annual ° (T/vr)	Hourly ^b (lb/hr)	Annual c (T/yr)
*													
Valves													
Gas Streams	98	0.00992	8,760	20%	0.18%	0.03%	%0	0.43	1.87	0.002	0.067	0.0003	0.001
Light Oil	74	0.0055	8,760	100%	0.26%	1	%0	0.41	1.78	0.001	0.00	1	;
Water/Light Oil	85	0.060216	8,760	1	0.02%	1	%0	0.02	0.08	0.000004	0.00002	I	1
Pumps Water/Light Oil	1	0.000052	8,760	ı	0.02%	I	%0	0.0001	0.0002	0.00000001	0.00000005	ı	!
Flanges													
Gas Streams	144	0.00086	8,760	%05	0.18%	0.03%	%0	90.0	0.27	0.0002	0.001	0.00004	0.0002
Light Oil	92	0.000243	8,760	100%	0.26%	1	%0	0.02	0.08	0.00005	0.0002	1	1
Water/Light Oil	91	9000000	8,760	1	0.02%	1	%0	0.0001	0.0004	0.000000002	0.0000001	ı	I
Connectors													
Gas Streams	157	0.00044	8,760	%05	0.18%	0.03%	%0	0.03	0.15	0.0001	0.001	0.00002	0.0001
Light Oil	138	0.060463	8,760	100%	0.26%	1	%0	90.0	0.28	0.0002	0.061	ı	ı
Water/Light Oil	141	0.060243	8,760	1	0.02%	1	%0	0.03	0.15	0.00001	0.00003	I	1
							TOTAL:	1.06	4.66	0.004	0.01	0.0004	0.001

Fugitive Emission Factors and Reduction Credits are per TCEQ Technical Cuidance Document for Equipment Leak Fugitives, dated October 2000. The emission factors are for total hydrocarbon, except for the emission factors associated with Water/Light Oil. As indicated on page 6 of 55 in the mentioned Guidance document, these factors are based off of a known stream constituency of 50%-99% water, and remainder VOC. Therefore, applying a VOC wt % would be double counting for the reduction due to water.

^b Hourly VOC emission rates are calculated as follows:

⁽⁸⁶ components) * (0.00992 lb/hr-component) * (50% VOC) * (100% - 0% reduction credit) = 0.43 lb/hr

 $^{(36 \;} components) \; * \; (0.00992 \; lb/hr-component) \; * \; (8.766 \; hr/yr) \; * \; (50\% \; VOC) \; * \; (100\% - 0\% \; reduction \; credit) / \; (2,000 \; lb/T) = 1.87 \; T/yr \; (2.000 \; lb/T) = 1.87 \; T/yr \; (3.000 \; lb/T) = 1$ ⁵ Annual VOC emission rates are calculated as follows:

SUMMARY OF TANKS SENT TO FLARE POTENTIAL TO EMIT BURLINGTON RESOURCES OIL & GAS COMPANY LP OIL & GAS STANDARD PERMIT REGISTRATION GENELLE UNIT AI AND BI

WB Emissions Uncontrolled Total Centrolled Total Co	Hourty Annual Hourty Annual Hourty Annual Hourty Annual (bhr) (Tyr) (bhr) (Tyr) (bhr) (Tyr) (bhr) (Tyr)	0.23 0.14 0.40 0.88 0.01 0.02 6.02	0.002 0.0001 0.01 0.04 0.0002 0.061 0.001 0.004
Flash Emissions ^a	d Hourly Annual (1b/hr) (T/yr)	0.17 0.74	0.01 0.04
tal Controlled Total	Annual Hourly Annual (T/yr) (D/hr) (T/yr)	571.68 4.14 11.43	76 0.09 0.34
is Uncontrolled Total	Hourly / (lb/hr)	206.85	4.71 16.76
WB Emissions ^b	Hourly Annual (Ib/hr) (T/yr)	88.46 53.13	0.89 0.03
Flash Emissions ^a	Hourly Annual (Ib/hr) (T/yr)	118.39 518.55	3.82 16.73
	Description	500 bbl Condensate Storage Tanks	TK-07 500 bb1 Produced Water Storage Tanks 3.82 16.73 (
	EPN FIN	TK-01 TK-02 TK-03 TK-04 TK-04 TK-04	FL-1 TK-07

VOC and Beneare Flash Emissions are calculated using the WinSian stream simulation program. Data imputs included the pressurized stream data and throughputs represented it his submirth. See the pages at the end of this attachment for a princent of the data inputs and emissions reports.

b The Working/Breathing emissions are calculated using AP 42 Chapter 7 calculations with data inputs from the stream data and throughputs. See the following pages for the represented calculations.

^c The Ideal Gaz Law was used to estimate the IDS emission rates using the maximum sulfar concentration in the gas coming off the tasks (150 ppm). An example calculation for hourly IDS emissions from FIN TK-07 and TK-08 follows: HS (Ishin) = (58 Vol Hy, 80 meteran) * (7 cml Volumétric Flow of Gas, selfin) * (1 and STD) * (1.314, atm-self)b-mol-KA) / (238 K)
HS (Ishin) = (150 ppm / IUV-0) * (58.96 selfin) * (1 and * (24.0799 lbfbmol/HZS) / (1.314, atm-self)b-mol-K) / (238 K)
HS (Ishin) = (150 ppm / IUV-0) * (58.96 selfin) * (1 and * (24.0799 lbfbmol/HZS) / (1.314, atm-self)b-mol-K) / (238 K)
HS (Ishin) = (150 ppm / IUV-0) * (58.96 selfin) * (1 and * (24.0799 lbfbmol/HZS) / (1.314, atm-selfib-mol-K) / (238 K)

d AII VOC tank emissions are routed to the flare control device with a capture and control efficiency of 98%. H₂S emissions are captured at 98% and then 98% converted to SO₂ during combission.

CALCULATION OF STORAGE TANK WORKING AND BREATHING POTENTIAL TO EMIT OIL, & GAS STANDARD PERMIT REGISTRATION

GENELLE UNIT AI AND BI BURLINGTON RESOURCES OIL & GAS COMPANY LP

														Benzene	Ļ			Total Loss	(T/yr)	0.14	0.0001
														Ben:	LŢ			Total Loss Total Loss Total Loss Total Loss	(lb/hr)	0.23	0.002
														ပ္	LH			Total Loss	(T/yr)	53.13	0.03
														VOC	L1			Total Loss	(Ib/hr)	88.46	0.89
															Lw	Working	Loss per	tank	(Ib/yr)	37,756.33	52.51
															Ls		Standing Loss	per tank		68,504.20	16
															Kn		35	Turnover	П	0.21	0.27
															Ks		Vented	+4	Factor	0.10	0.98
															Ke	Vapor			Factor	2.5751	0.0662
															ΔPv			Daily Vapor	Pressure Range	3.53719	0.02227
															W		Vapor			0.08504	0.00023
See Table	See I ab e	See Table	Cone	12.26	90.0	1521	14.7	3.7	72.1	541.6	522.5	19.1	-		P _{VA}	Average		Pressure	(psia)	13.313	960.0
Tonlyr	IDIÓT	lb/hr		psia	isd	Btu/ft2-day	psia	lom-dl/dl	4.	å	ŗ	ů			TLA	Daily Average	Liquid Surface	Temp	,R	539.8	539.8
															۸۸	Vapor	_	Volume	(#3)	1428.4	1428.4
															Hvo	Vapor	Space	Outage	(£)	12.63	12.63
												auge			ΔTv	Dairy Vapor	Temp.	Range	ηŁ	36.75	36.75
VKEKS	V UKU K	Pmax Qh		ressure	nge				ture	Temperature	emperature	nperature ra		S	rj		Annual	thruput	(ppl)	365,000	146,000
M AA GGC = 3	= COOLINA	= 0.001 Mv	ction	Reid Vapor F	t pressure ra	on factor	Pressure	ular Weight	age Tempera	m Ambient	m Ambient T	ambient ter	ı	ecification	Q ²		Max. Hourly	Thruput	(bbl/hr)	195	195
total loss = Ls + Lw standing loss = 360 7V WV Re Rs	WORKINGTIOSS = CLOCKT INV PV CLIKITIN	working loss = 0.001 Mv Pmax Qh	Roof Construction	Condensate Reid Vapor Pressure	Breather vent pressure range	Solar insolation factor	Atmospheric Pressure	Vapor Molecular Weight	Annual Average Temperature	Daily Maximum Ambient Temperature	Daily Minimum Ambient Temperature	Daily average ambient temperature range	Product factor	Material Specifications	PMAX		Reid Vapor	Pressure	(psia)	12.26	0.123
1 3	Π	T.	П		Qd∇	-	٩	MV	-	TAX	⊢AN	ΔTA	Κp	M	Mv		Vapor	Molecular	Weight	37	22
															α		Paint Solar	Absorbance	Factor	0.54	0.54
																		Paint	Conditions	Good	Good
														ations	Color				Paint Color Conditions	Gray	Gray
														Tank Specifications	Capacity		Tank	Capacity	(pp)	200	200
														Tank	H/L	ank			(£)	25	25
															D			E .	(£)	12	12
															N/H				Tank Type	>	>
																		No. of	Tanks	9	2
																			rial	nsate	*

NOTE: Tank working and breathing emissions are based on the equations found in EPA AP 42 Chapter 7. All factors used are represented in the table on this page. The Condensare Reid Vapor Pressure and Vapor Molecular Weight are determined based on the WinSim condensate stream and Off Gas stream. All other variables are found in AP 42 Chapter 7 or are default unit values.

CALCULATION OF TRUCK LOADING POTENTIAL TO EMIT OIL & GAS STANDARD PERMIT REGISTRATION

BURLINGTON RESOURCES OIL & GAS COMPANY LP GENELLE UNIT A1 AND B1

Sample Calculations for condensate:

Loading Loss (lb/Mgal) = 12.46 * S * P * M / T (AP-42 Section 5.2)

Maximum Loading Loss = 12.46 * 0.60 * 12.260 * 37 / 560 = 6.056 lb/Mgal

 $Annual\ Emissions = (Annual\ Throughput,\ Mgal/yr) * (Average\ Loading\ Loss,\ lb/Mgal) * (1-Control\ Efficiency) / (2000\ lb/T) Annual\ Emissions = (15330.00\ Mgal/yr) * (6.149\ lb/Mgal) * (1-0.98) / (2000\ lb/T) = 0.94\ T/yr$

 $Hourly\ PTE = (Hourly\ Throughput,\ Mgal/hr)* (Maxinnum\ Loading\ Loss,\ lb/Mgal)* (\ 1-Control\ Efficiency) \\ Hourly\ PTE = (8.19\ Mgal/yr)* (6.056\ lb/Mgal)* (\ 1-0.98) = 0.99\ lb/hr$

Benzene	PTI (T/y	00:00	0.00
	Hourly PTE (lb/hr)	0.003	0.001
VOC	Annual PTE (T/yr)	0.94	6.19
Λ	Hourly PTE (lb/hr)	0.99	0.48
	Capture and Control Efficiency	0.98	86'0
	Annual Throughput (Mgals/yr)	15,330.00	6,132.00
	Hourly Throughput (Mgal/hr)	8.19	8.19
	Average Loading Loss (lb/Mgal)	6.149	0.062
	Maximum Loading Loss [lb/Mgal]	6.056	650:0
	M	37	37
	P @531.7 °R (psia)	11.820	0.026
	P @ 560 °R (psia)	12.26	0.12
	S	09:0	09:0
	Facility Name	Condensate Truck Loading	Produced Water Truck Loading
	EPN	FL-1	FL-1
	FIN	TRUCKI	TRUCK2 FL-1

PTE (T/yr)

Annual

0.002

0.0004

Daily maximum and daily minimum ambient temperature from Tanks 4.09d for this area's annual averages (81.6 and 62.5, for average of 72.1).

Annual Average Condensate Vapor Pressure at T_{LA} : $P = \exp \left\{ \ [(2799/(T+459.6) - 2.227] \log 10(RVP) - 7261/(T+459.6) + 12.82 \right\} \\ \exp \left\{ \ [(2799/(72.1+459.6) - 2.227] \log 10(12.26) - 7261/(72.1+459.6) + 12.82 \right\} \\$

Annual Average Produced Water Vapor Pressure at $T_{\rm LA}$: $P = \exp\{~[~(2799/(T+459.6)-2.227]\log 10(RVP)-7261/(T+459.6)+12.82\} \\ \exp\{~[~(2799/(72.1+459.6)-2.227]\log 10(12.26*.01)-7261/(72.1+459.6)+12.82\} \\$ 0.026 psia

SUMMARY OF PROCESS FLARE FUEL GAS COMBUSTION AND WASTE GAS COMBUSTION POTENTIAL TO EMIT-NORMAL OPERATIONS

OIL & GAS STANDARD PERMIT REGISTRATION

GENELLE UNIT A1 AND B1

BURLINGTON RESOURCES OIL & GAS COMPANY LP

<u> </u>	FIN Description Pilot Gas Combustion	CO (lb/hr) (T/yr) 0.01 0.04	(T/yr)	(lb/hr) (T/yr) 0.003 0.01	(T/yr)	SO ₂ (Ib/hr) (0.0004	(T/yr)	(lb/hr) 0.00000001	H ₂ S (T/yr)	(lb/hr)	VOC lb/hr) (T/yr) 0.0001 0.0004		(T/yr)
Flare Ass	Flare Assist Gas Combustion	0.44	1.93	0.22	96.0	0.03	0.13	0.00001	0.00004	0.01	0.04	0.000003	0.00001
Waste Ga	Vaste Gas Combustion	2.54	5.74	1.28	2.88	0.04	0.17	0.001		1	1	;	1
	Totals:	2.99	7.71	1.50	3.85	0.07	0.30	0.001	0.004	0.01	0.04	0.000003	0.00001

NOTE: Pilot Gas Combustion and Flare Assist Gas Combustion calculations are shown on the following page. Waste Gas Combustion shown here is the combined sum of the waste gas from the Condensate and Produced Water tanks and loading operations shown on subsequent pages.

CALCULATION OF FLARE PILOT GAS and FLARE ASSIST GAS POTENTIAL TO EMIT

OIL & GAS STANDARD PERMIT REGISTRATION

GENELLE UNIT A1 AND B1 BURLINGTON RESOURCES OIL & GAS COMPANY LP

					() as considered				Emission Rates	n Rates
N	FIN	Description	LAFV (Btu/sef)	Heat Release scf/hr	Operating Hours (hr/yr)	Pollutant	Emission Factors	Units	Hourly * (lb/hr)	Annual ^b (T/yr)
MEL	F[-1	Flare 1- Process Pilot Gas Combustion	1,392	કો	8,760	CO NO _X	0.2755 0.138	lb/MMBtu lb/MMBtu 	0.003	0.04
						SO ₂	150 150	ppm H ₂ S	0.0000001	0.000
						VOC Benzene	5.5 0.0021	lb/MMscf lb/MMscf	0.0001	0.000001
FL-1	FL-1	Flare 1- Process Flare Assist Gas Combustion	1,292	1,250	8,760	CO NO _X PM/PM ₁₀ /PM _{2.5} SO ₂ H ₂ S VOC	0.2755 0.138 - ° 150 150 5.5	lb/MMBtu lb/MMBtu ppm H ₂ S ppm H ₂ S lb/MMscf lb/MMscf	0.44 0.22 0.03 0.00001 0.01 0.000003	1.93 0.96 0.96 0.13 0.00004 0.04 0.0001

^a Emission Factors for CO and NO_x are based upon the Draft TNRCC Guidance Document for Flares and Vapor Oxidizers (dated 10/00) for other high-Btu flares. An example

calculation for hourly CO emissions for EPN FL-1 follows: CO (lb/hr) = (Heat Release, sc \hat{p} (hr) * (Lower Heating Value, Bhu/scf) * (MM/10⁶)*(Emission Factor, lb/MMBtu)

CO (lb/ltr) – (15 sef/ht) * (1,292 Btu/sef) * (MM/10 $^{\circ}$ 0,0755 lb/MMBtu) = 0.01 lb/ht CO

The Emission Factors for VOC and Benzene were based upon AP-42 Table 1.4-2 and 1.4-3 (dated 7/98). An example calculation for hourly VOC emissions for EPN FL-1 follows: $\mathrm{VOC}\;(\mathrm{lb/hr}) = \;(\mathrm{Heat}\;\mathrm{Release}, \mathrm{scf/hr}) * (\mathrm{MM/10^6}) * (\mathrm{Emission}\;\mathrm{Factor}, \mathrm{lb/MMscf})$ ${\rm VOC} \; (lb/hr) = \; (15 \; {\rm scf/hr}) * (MM/10^{\circ}6) * (5.5 \; lb/MMscf)$ lb/hr VOC 0.0001

concentration at the site is conservatively represented at 150 ppm. When used as a pilot gas or flare assist gas, 98% of this concentration will be converted to SO₂, and 2% will A material balance approach was used to estimate the SO, and H2S emission rates using the maximum sulfur concentration in the natural gas. As shown in Figure 5-1, H2S remain uncombusted and unconverted. An example calculation for hourly SO2 emissions for the pilot gas of EPN FL-01 follows:

 SO_2 (lb/hr) = Heat Release (scf/hr)*(Sulfur Content, ppmv)*(98% conversion to SO_2)*(1 lb-mol/379 scf)*(34.065 lb H2S/lb-mol)*(64.06 lb SO_2 /34.065 lb H2S) $SO_2 \ (lb/hr) = (15 \ scf/hr)^* ((150 \ ppm \ H2S)/(10^{\circ}6 \ scf \ gss))^* (98\% \ converted \ to \ SO2)^* (1 \ lb-mol/379 \ scf)^* (34.065 \ lb \ H2S/lb-mol)^* (64.06 \ lb \ SO2/34.065 \ lb \ H2S)$

 $= \frac{0.0004}{\text{lb/hr SO}_2}$

= 0.0004 lb/tr SO₂

CO (T/yr) = (Hourly Emissions, lb/hr)*(Annual Operating Hours, hr/yr)*(1 T/2,000 lb) CO (T/yr) = (0.01 lb/hr)*(8,760 hr/yr)*(1 T/2,000 lb)

CO (T/yr) = 0.04 T/yr CO

 $^{^{\}rm b}$ An example calculation for annual CO emissions for EPN FL-1 follows:

The process flares are smokeless per 40 CFR §60.18 requirements; therefore, PM emissions are negligible.

PROCESS FLARE WASTE GAS COMBUSTION EMISSIONS OIL & GAS STANDARD PERMIT REGISTRATION GENELLE UNIT A1 AND B1

BURLINGTON RESOURCES OIL & GAS COMPANY LP

FPA FIN Description (Btu/scf) (MMBtu/hr) (MMBtu/hr) (MMBtu/hr) (MMBtu/hr) FIL-1 Process Flare 1,925 8.30 40,012.84 CO 0.2755 Ib/MMBtu Condensate Tanks and Loading 1,895 0.91 1,684.69 CO 0.2755 Ib/MMBtu CO 0.2755 Ib/MMBtu CO CO CO CO CO CO CO C					Waste Gas	Waste Gas Flow Rate				Potentia	Potential to Emit
FP.V FL.I Process Flare (MMBtu/hr) (MMBtu/hr) (MMBtu/hr) Pollutant Factors Units FL.I Process Flare 1,925 8.30 40,012.84 CO 0.2755 lb/MMBtu Condensate Tanks and Loading 1,825 0.91 1,684.69 CO 0.2755 lb/MMBtu FL.I Process Flare 1,895 0.91 1,684.69 CO 0.2755 lb/MMBtu FL.I Produced Water Tank and Loading 1,684.69 CO 0.2755 lb/MMBtu SO2 - - - - - - SO2 - - - - - - FL.I Produced Water Tank and Loading 1,684.69 CO 0.2755 lb/MMBtu SO2 - - - - - - SO2 - - - - - His - - - - - SO2 -				LHV^a	Hourly	Annual		Emission		Hourly	Annual
FL-1 Process Flare 1,925 8.30 40,012.84 CO 0.2755 Condensate Tanks and Loading PMPM ₁₀ PM _{2.5} Co Co Co Co Co Co Co C	EPN	BIN	Description	(Btn/scf)	(MMBtn/hr)	(MMBtu/yr)	Pollntant	Factors	Units	(lb/hr)	(T/yr)
NOx NOx 0.1380	FL-1	FL-1	Process Flare	1,925	8.30	40,012.84	00	0.2755	lb/MMBtu	2.29	5.51
PM/PM ₁₀ PM ₂₅			Condensate Tanks and Loading				$NO_{\rm X}$	0.1380	lb/MMBtu	1.15	2.76
SO ₂ = c H ₂ S = c H ₂ S = c H ₂ S = c Toduced Water Tank and Loading							$\mathrm{PM/PM}_{10'}\mathrm{PM}_{2.5}$	١	I	ŀ	I
H ₂ S c FL-1 Process Flare							SO_2	١	1	0.04	0.16
FL-1 Process Flare 1,895 0.91 1,684.69 CO 0.2755 Produced Water Tank and Loading Produced Water Tank and Loading Profused Profused							H_2S	١	I	0.0004	0.002
oading NO _X 0.1380 $PMPM_{10}PM_{25} = {}^e$ SO ₂ = c H ₂ S = c	1	FL-1	Process Flare	1,895	0.91	1,684.69	00	0.2755	lb/MMBtu	0.25	0.23
a 3 3 			Produced Water Tank and Loading				NO_{x}	0.1380	lb/MMBtu	0.13	0.12
9 9 							$\rm PM/PM_{10}/PM_{2.5}$	١	1	ŀ	1
١							SO_2	١	I	0.002	0.01
							H_2S	١	I	0.0004	0.002

^a Waste gas stream lower heating value was taken from WinSim calculated stream value.

CO (lb/hr) = (Hourly Waste Gas Flow Rate, MMBtu/hr)*(Emission Factor, lb/MIMBtu)

CO(lb/hr) = (8.30 MMBtu/hr)*(0.2755 lb/MMBtu)

^e H₂S emissions are routed from the tanks to the flare and from the seperator to the flare and then converted to SO₂. SO₂ emission rates were determined based on the combustion efficiency of 98% H₂S converted to SO₂. H₂S emissions for EPN EL-1 follows:

SO₂ (lb/ltr) = (Source H₂S Emission Rate, lb/ltr) * (98% captured H2S stream) * (98% conversion to SO₂ at combustion) * (1 mol H₂S/34.07 lb H₂S) * (64.06 lb SO2/1 mol SO₂) $SO_{2} (lb/hr) = (0.020 \ lb/hr \ H2S) * (0.020 \ lb/hr \ H2S) * (0.020 \ lb/hr) = (0.020 \ lb/hr) * (0.020 \ lb/hr) = (0.020 \ lb/hr) * (0.020 \ lb/hr) *$

^d An example calculation for annual CO emissions for EPN FL-1 follows:

 $CO\left(T/yt\right) = (Annual \ Waste \ Gas \ Flow \ Rate, \ MAIBtu'yt) * (Fmission \ Factor, \ lb/MMBtu) * (1\ T/2,000\ lb) \\ CO\left(T/yt\right) = (46,012.84\ MMBtu'yt) * (0.2755\ lb/MMBtu) * (1\ T/2,000\ lb)$

° The process flares are smokeless per 40 CFR §60.18 requirements; therefore, PM emissions are negligible.

b Emission Factors for CO and NO_X are based upon the Draft TNRCC Guidance Document for Flares and Vapor Oxidizers (dated 10/00) for other high-Bu flares. An example calculation for hourly CO emissions for EPN Fl-1 follows:

CALCULATION OF FLARE FEED RATES FROM FINS TK-01 THROUGH TK-06, and TRUCK1

OIL & GAS STANDARD PERMIT REGISTRATION

GENELLE UNIT A1 AND B1

BURLINGTON RESOURCES OIL & GAS COMPANY LP

TK-01 through TK-06 and TRUCK1 Total Emissions:^a

VOC Emissions (lb/hr): 256.35 VOC Emissions (TPY): 618.68 Hydrocarbon Emissions (lb/hr): 395.42 Hydrocarbon Emissions (TPY): 954.31

	Heating	Condensate Tanks Flash Gas	0	K-06 and TRUCK1	Flare Fe	ed Rate d
Constituent	Value ^b (Btu/lb)	Weight (%)	Hourly (lb/hr)	Annual (T/yr)	Hourly (MMBtu/hr)	Annual (MMBtu/yr)
Methane	23,861	10.93%	43.22	104.31	1.01	4,878.32
Ethane	22,304	22.13%	87.51	211.19	1.91	9,232.35
Propane	21,646	29.01%	114.71	276.85	2.43	11,745.68
I-Butane	21,242	6.53%	25.82	62.32	0.54	2,594.65
N-Butane	21,293	14.95%	59.12	142.67	1.23	5,954.23
I-Pentane	21,025	4.62%	18.27	44.09	0.38	1,816.90
N-Pentane	21,072	4.68%	18.51	44.66	0.38	1,844.51
Cyclopentane	20,350	0.00%	0.00	0.00	0.00	0.00
n-Hexane	20,928	2.60%	10.28	24.81	0.21	1,017.68
Cyclohexane	20,195	0.25%	0.99	2.39	0.02	94.60
Other Hexanes	20,928	0.00%	0.00	0.00	0.00	0.00
Heptanes	20,825	1.07%	4.23	10.21	0.09	416.74
Octanes	20,747	0.34%	1.34	3.24	0.03	131.75
Nonanes	20,687	0.10%	0.40	0.95	0.01	38.52
Decanes Plus	20,638	0.32%	1.27	3.05	0.03	123.37
Benzene	18,172	0.09%	0.36	0.86	0.01	30.63
Toluene	18,422	0.15%	0.59	1.43	0.01	51.63
Ethylbenzene	18,658	0.02%	0.08	0.19	0.001	6.95
Xylene	18,438	0.10%	0.40	0.95	0.01	34.33
	VOC	64.83%				
				Total	: 8.30	40,012.84

^a Total VOC Emissions were determined by adding the Uncontrolled Streams for FINs TK-01 through TK-06 on the Tank Summary table with the uncontrolled emissions from the Condensate Truck Loading FIN TRUCK1. Total Hydrocarbon Emissions were calculated as follows:

Total HC (lb/hr) = VOC Emissions (lb/hr) * (1/VOC% of stream)

Total HC (lb/hr) = (256.35 lb/hr) * (1 / 64.83%)Total HC (lb/hr) = 395.42 lb/hr

 $MMBtu/hr\ Methane = Methane\ Heating\ Value\ (Btu/lb)* Hourly\ Methane\ Emissions\ (lb/hr)* 98\%\ of\ stream\ is\ combusted\ /\ 10^6$

 $MMBtu/hr\ Methane = (23,861\ Btu/lb)*(43.22\ lb/hr)*98\%\ /\ (10^{6})$

MMBtu/hr Methane = 1.01 MMBtu/hr

An example calculation for the annual flare feed rate for Methane is demonstrated.

MMBtu/yr Methane = Methane Heating Value (Btu/lb) * Annual Methane Emissions (T/yr) * (2,000 lb/T) * 98% of stream is combusted / 10^6

MMBtu/yr Methane = $(23,861 \text{ Btu/lb}) * (104.31 \text{ T/yr}) * (2,000 \text{ lb/T}) * 98\% / (10^6)$

MMBtu/yr Methane = 4,878.32 MMBtu/yr

^b Heating values taken from Perry's Chemical Engineers' Handbook , Table 3-207 (pg. 3-155)

² Emission Rates were proportioned from the Total Hydrocarbon Emissions using the Condensate Flash Gas stream constituents weight percents, generated by the WinSim program.

^d An example calculation for the hourly flare feed rate for Methane is demonstrated.

CALCULATION OF FLARE FEED RATES FROM FINS TK-07, TK-08, and TRUCK2

OIL & GAS STANDARD PERMIT REGISTRATION

GENELLE UNIT A1 AND B1

BURLINGTON RESOURCES OIL & GAS COMPANY LP

ΓK-07, TK-08 and TRUCK2 Total Emissions:^a

 VOC Emissions (lb/hr):
 28.71

 VOC Emissions (TPY):
 26.26

 Hydrocarbon Emissions (lb/hr):
 44.28

 Hydrocarbon Emissions (TPY):
 40.50

	Heating	Produced Water Tanks Flash Gas	*	and TRUCK2	Flare Fe	ed Rate d
Constituent	Value ^b (Btu/lb)	Weight (%)	Hourly (lb/hr)	Annual (T/yr)	Hourly (MMBtu/hr)	Annual (MMBtu/yr)
Methane	23,861	10.62%	4.70	4.30	0.11	201.10
Ethane	22,304	21.70%	9.61	8.79	0.21	384.26
Propane	21,646	28.75%	12.73	11.64	0.27	493.84
I-Butane	21,242	6.57%	2.91	2.66	0.06	110.75
N-Butane	21,293	15.06%	6.67	6.10	0.14	254.58
I-Pentane	21,025	4.66%	2.06	1.89	0.04	77.89
N-Pentane	21,072	4.72%	2.09	1.91	0.04	78.89
Cyclopentane	20,350	0.00%	0.00	0.00	0.00	0.00
n-Hexane	20,928	2.62%	1.16	1.06	0.02	43.48
Cyclohexane	20,195	0.25%	0.11	0.10	0.002	3.96
Other Hexanes	20,928	0.00%	0.00	0.00	0.00	0.00
Heptanes	20,825	1.08%	0.48	0.44	0.01	17.96
Octanes	20,747	0.34%	0.15	0.14	0.003	5.69
Nonancs	20,687	0.10%	0.04	0.04	0.001	1.62
Decanes Plus	20,638	0.32%	0.14	0.13	0.003	5.26
Benzene	18,172	0.09%	0.04	0.04	0.001	1.42
Toluene	18,422	0.15%	0.07	0.06	0.001	2.17
Ethylbenzene	18,658	0.02%	0.01	0.01	0.0002	0.37
Xylene	18,438	0.11%	0.05	0.04	0.001	1.45
	VOC	64.84%				
				Tot	al: 0.91	1684.69

^a Total VOC Emissions were determined by adding the Uncontrolled Streams for FINs TK-07 and TK-08 on the Tank Summary table and the uncontrolled emissions associated with the produced water loading, FIN TRUCK2. Total Hydrocarbon Emissions were calculated as follows:

Total IIC (lb/hr) = VOC Emissions (lb/hr) * (1/VOC% of stream)

Total HC (lb/hr) = (28.71 lb/hr) * (1/64.84%) Total HC (lb/hr) = 44.28 lb/hr

MMBtu/hr Methane = Methane Heating Value (Btu/lb) * Hourly Methane Emissions (lb/hr) * 98% of stream is combusted / 10^6

 $MMBtu/hr\ Methane = (23,861\ Btu/lb) * (4.70\ lb/hr) * 98\% / (10^6)$

MMBtu/hr Methane = 0.11 MMBtu/hr

An example calculation for the annual flare feed rate for Methane is demonstrated.

MMBtu/yr Methane = Methane Heating Value (Btu/lb) * Annual Methane Emissions (T/yr) * (2,000 lb/T) * 98% of stream is combusted / 10^6

MMBtu/yr Methane = $(23,861 \text{ Btu/lb}) * (4.30 \text{ T/yr}) * (2,000 \text{ lb/T}) * 98\% / (10^6)$

 $MMBtu/yr\ Methane = 201.10\ MMBtu/yr$

^b Heating values taken from Perry's Chemical Engineers' Handbook , Table 3-207 (pg. 3-155)

² Emission Rates were proportioned from the Total Hydrocarbon Emissions using the Produced Water Flash Gas stream constituents weight percents, generated by the WinSim program.

 $^{^{\}rm d}$ An example calculation for the hourly flare feed rate for Methane is demonstrated.

CALCULATION OF STORAGE TANK WORKING AND BREATHING POTENTIAL TO EMIT DURING FLARE DOWNTIME-SMS

OIL & GAS STANDARD PERMIT REGISTRATION GENELLE UNIT ALAND BL

GENELLE UNIT A1 AND B1 BURLINGTON RESOURCES OIL & GAS COMPANY LP

																		LT	
																	၁	Ļ	
																	VOC	Lī	
																		Ls	Standing
																		Ks	
																		Ke	
																		ΔPv	
Value	See Table	See Table	See Table	See Table	Cone	12.26	90.0	1521	14.7	37	72.1	541.6	522.5	18.1	_			۸۸	
Units	Ton/yr	lb/yr	lb/yr	lb/hr		psia	isd	B:u/ft2-day	psia	lom-dl/dl	٤,	å	'n	'n				P _{VA}	
																		TLA	Average
														nge				Hvo	Vanor
		Ke Ks	√ Q Kn Kp	nax Qh		essure	ge				ıre	emperature	mperature	perature ra				ΔTv	
	+ Lw	= 365 Vv Wv	0.001 Mv P	0.001 Mv P	tion	eid Vapor Pi	pressure ran	n factor	ressure	ar Weight	le Temperat	n Ambient T	Ambien: Te	ambient ten			tions	ď,	
escription	total loss = Ls + Lw	standing loss = 365 Vv Wv Ke Ks	working loss = 0.001 Mv Pv Q Kn Kp	working loss = 0.001 Mv Pmax Qh	Roof Construction	Condensate Reid Vapor Pressure	Breather vent pressure range	Solar insolation factor	Atmospheric Pressure	Vapor Molecular Weight	Annual Average Temperature	Daily Maximum Ambient Temperature	Daily Minimum Ambient Temperature	Daily average ambient temperature range	Product factor		Material Specifications	P _{MAX}	
Variable Description	L _T to:	Ls	L _W Wc	L. W.	R	RVP Co	∆Pb Br	- -	PA	Mv Va	T A	TAX	T _{AN} De	ΔT _A D ₂	κ _P Pr		Material	Μv	
					<u></u>	<u> </u>	<u> </u>		_	<u> </u>						l		α	
																	ons	Color	
																	Tank Specificatio	apacity	
																	Tank Sp	H/L Capacity	Tank
																		٥	
																		N/H	
																	L	_	

ene	Ļ				Total Loss	(T/yr)	0.002	0.0000004
Benzene	Lt				Total Loss	(lb/hr)	0.02	0.000004
0	Ī				Total Loss	(T/yr)	69.0	0.0002
ΝOΛ	<u>ا</u>				Total Loss Total Loss	(lb/hr)	7.82	0.002
_	,		Standing	Loss per	tank	(lb/yr)	1,370.08	0.3
	Ks			Vented	Vapor Sat.	Factor	0.10	0.98
	Ke				Vapor Space	Expan. Factor	2.5751	0.0662
	ΔPv			Daily Vapor	Prossure	Range	3.53719	0.02227
	- M			Vapor	Donsity	(Ib/ff3)	0.08504	0.00023 0.02227
	P _{VA}			Average Vapor	Prossure	(bsia)	13.313	0.036
	_4	Average	Liquid	Surface	Temp	ů	539.8	539.8
	ΡΛο		Vapor	Space	Outago	Œ	12.63	12.63
	ΔTv			Daily Vapor	Tomp. Range Outage	ŗ	36.75	36.75
ations	Ö,			Max. Hourly Daily Vapor	Storage	(bbl/hr)	500	500
al Specific	Рмах			Reid Vapor	Pressure	(bsla)	12.26	0.123
Mater	ΜV			Vapor	Molocular	Weight	37	37
	ъ			Paint Solar	Absorbanco	Factor	0.54	0.54
					Paint	Conditions	Good	Good
ations	Color					Paint Color Conditions	Gray	Gray
nk Specific	Capacity			Tank	Capacity	(pp)	200	500
Tank	H/L		Tank	Height/	Longth	(tt)	25	25
	۵				Tank Diameter	(Lt)	12	12
	H/A					Tank Type	^	^
					No. of	Tanks	9	2
						Material	Condensate	PW

NOTE: Tank working and treathing emissions are based on the equations found in EPA AP 42 Chapter 7. All factors used are represented in the table on this page. The Condensare Reid Vapor Pressure and Vapor Molecular Weight are determined based on the WinSim condensate stream and Off Gas stream. All other variables are found in AP 42 Chapter 7 or are default unit values.

The emissions shown are due to flare maintenance occuring 2% of the year. During the flare downtime the wellheads would be shut in. Therefore, there would be no condensate or produced water liquids flowing to the tanks, however, any liquid already in the banks would remain and have breathing (standing Issuer) as the flare is down for maintenance. The calculations shown demonstrate this alternative operating scenario regarding flare maintenance and downtime, this scenario is being shown to occur for 175.2 hours in a year. As shown on the summany page representing the Tank Emission sent to Flate, 18 emissions are represented as occuring when the liquid streams flash during the change from a pressurized flow to the amongsteric tank. Due to the chemical properties of \$31 the most conservative approach is to represent that all 14S in the liquid successor of the tank.

CALCULATION OF SEPARATOR GAS ROUTED TO FLARE POTENTIAL TO EMIT - SMSS OIL & GAS STANDARD PERMIT REGISTRATION

GENELLE UNIT AI AND BI

BITINGTON DESCRIPTION & CAS COMPANY ID	DOMESTIC OF RESOCIACES OF A COST OF THE	

Potential to Emit (PTE)

											VOC	C	Benzene	ene	H_2S	
Facility Identification Number (FIN)	Gas Throughput at Site (MSCE/day)	Gas Throughput (MSCF/hr)	Percentage of Year Separator Stream to Flare	Number of Hours per Year sent to Flare	Gas Volume Sent to Flare (MSCF(yr)	Gas Stream Molecular Weight (lb/lb-mol)	Max VOC Percentage in Gas (wt%)	Max Benzene Percentage in Gas (wt%)	Max H ₂ S Percentage in Gas (wt%)	Capture and Control Efficiency on Flare (%)	Hourly Emission Rate ^b (lb/hr)	Annual Emission Rate ^c (T/yr)	Hourly Emission Rate ^b (B/hr)	Annual Emission Rate ^c (T/yr)	Hourly Emission Rate (lb/hr)	Annual Emission Rate (T/yr)
SEP-GAS	3000	125.00	%9	525.6	65,700	29.43	20%	0.18%	0.03%	%86	97.06	25.51	0.35	60.0	90.0	0.02

^a During engine maintenance at other downstream sites, the low pressure separator gas at this site may be routed to flare 6% of the year.

^b Hourly VOC emission rates are calculated as follows:

⁽Gas Throughput, MSCF/hr) / (379 scf/lb-mol) * (Gas Stream MW, lb-lb-mol) * (Maximum VOC Percentage in Gas) * (Capture and Control Efficiency on Flare) = (VOC Emissions, lb/hr)

^{(125.00~}MSCF/hr)~/~(379~scflb-mol)~*~(29.43~lb/lb-mol)~*~(50%)~*~(100%-98%)~*~(1000~scfMscf) = 97.06~lb/hr

[°] Annual VOC emission rates are calculated as follows:

⁽Gas Throughput at Site, MSCF/yr) / (379 scfib-mol) * (Gas Stream MW, Ib/he-mol) * (Max VOC Percentage in Gas) * (Capture and Control Efficiency on Flare) * (1000 scf/Mscf) / (2000 lb/T) = (VOC Emissions, T/yr) (5770 scfib-mol) * (299.43 lb/he-mol) * (59%) * (100% scf/Mscf) / (2000 lb/T) = 25.51 T/yr

PROCESS FLARE WASTE GAS COMBUSTION EMISSIONS - SMSS OIL & GAS STANDARD PERMIT REGISTRATION

GENELLE UNIT A1 AND B1 BURLINGTON RESOURCES OIL & GAS COMPANY LP

				Waste Gas	Waste Gas Flow Rate				Potentia	Potential to Emit
EPN	FIN	Description	LHV ^a (Btu/scf)	Hourly (MMBtu/hr)	Hourly Annual (MMBtu/hr)	Pollutant	Emission Factors	Units	Hourly ^b (lb/hr)	Annual ^e (T/yr)
FL-1	FL-1	Process Flare	1,674	208.56	109,618.77	00	0.2755	lb/MMBtu		15.10
		LP Separator Gas to Flare Event				$NO_{\rm X}$	0.1380	lb/MMBtu	28.78	7.56
						$PM/PM_{10}/PM_{2.5}$	9	1	1	ŀ
						SO_2	١	1	5.42	1.81
						II_2S	٦	I	90.0	0.02

^a Waste gas stream lower heating value was taken from the inlet gas analysis.

 $CO\ (lb/hr) = \ (Hourly\ Waste\ Gas\ Flow\ Rate,\ MMBtu/hr)*(Emission\ Factor,\ lb/MMBtu)$

CO (lb/hr) = $(208.56 \text{ MMBtu/hr})^*(0.2755 \text{ lb/MMBtu})$

c H₂S emissions are routed from the separator to the flare and then converted to SO₂. SO₂ emission rates were determined based on the combustion efficiency of 98% H₂S converted to SO₂. H₂S emitted at the flare is 2% of the captured stream not converted by combustion. An example calculation for hourly SO₂ emissions for EPN FL-1 follows:

 SO_2 (B/hI) = (Source H_2S Emission Rate, B/hI) * (98% captured H2S stream) * (98% conversion to SO_2 at combustion) * (1 mol $H_2S/34.07$ $B/h_2S/34.07$ $B/h_2S/34.07$ mol SO_2) SO₂ (lb/hr) = (3.000 lb/hr H2S off Separator)* (98%) * (98%) * (1 mol H2S/34.07 lb H2S) * (64.06 lb SO2/1 mol SO2)

= 5.42 lb/hr SO₂

^d An example calculation for annual CO emissions for EPN FL-1 follows:

CO (T/yr) = (Annual Waste Gas Flow Rate, MMBtu/yr) * (Emission Factor, Ib/MMBtu) * (1 T / 2,000 Ib)

CO (T/yr) = (109,618.77 MMBm/yr) * (0.2755 Ib/MMBm) * (1 T/2.000 Ib)= 15.10 T/yr CO ° The process flares are smokeless per 40 CFR §60.18 requirements; therefore, PM emissions are negligible.

[·] Emission Factors for CO and NO_X are based upon the Draft TNRCC Guidance Document for Flares and Vapor Oxidizers (dated 10/00) for other high-But flares. An example calculation for hourly CO emissions for EPN Fl-1 follows:

CALCULATION OF FLARE FEED RATES FROM LP SEPARATOR - SMSS

OIL & GAS STANDARD PERMIT REGISTRATION

GENELLE UNIT A1 AND B1

BURLINGTON RESOURCES OIL & GAS COMPANY LP

 Max BD Volume (Mscf/hr)
 125.00

 Max BD Volume (Mscf/yr)
 65,700

 Gas Density (lb/scf)
 0.0781

	Heating	Inlet Gas	Separator BI	D Emissions ^b	Flare Fe	eed Rate ^c
	Value ^a	Weight	Hourly	Annual	Hourly	Annual
Constituent	(Btu/lb)	(%)	(lb/hr)	(T/yr)	(MMBtu/hr)	(MMBtu/yr)
Methane	23,861	28.16%	2,749.12	722.47	64.28	33,788.16
Ethane	22,304	21.30%	2,079.41	546.47	45.45	23,889.40
Propane	21,646	20.53%	2,004.24	526.71	42.52	22,346.28
I-Butane	21,242	4.87%	475.43	124.94	9.90	5,201.79
N-Butane	21,293	9.92%	968.44	254.51	20.21	10,621.79
I-Pentane	21,025	3.72%	363.17	95.44	7.48	3,932.99
N-Pentane	21,072	3.60%	351.45	92.36	7.26	3,814.57
Cyclopentane	20,350	0.00%	0.00	0.00	0.00	0.00
n-Hexane	20,928	1.40%	136.68	35.92	2.80	1,473.40
Cyclohexane	20,195	0.46%	44.91	11.80	0.89	467.07
Other Hexanes	20,928	2.43%	237.23	62.34	4.87	2,557.12
Heptanes	20,825	0.99%	96.65	25.40	1.97	1,036.75
Octanes	20,747	0.11%	10.74	2.82	0.22	114.67
Nonanes	20,687	0.05%	4.88	1.28	0.10	51.90
Decanes Plus	20,638	0.00%	0.00	0.00	0.00	0.00
Benzene	18,172	0.12%	11.72	3.08	0.21	109.70
Toluene	18,422	0.19%	18.55	4.87	0.33	175.84
Ethylbenzene	18,658	0.01%	0.98	0.26	0.02	9.51
	18,438	0.03%	2.93	0.77	0.05	27.83

^a Heating values taken from Perry's Chemical Engineers' Handbook , Table 3-207 (pg. 3-155)

Methane (lb/hr) = Maximum BD Volume (Mscf/hr) * Gas Density (lb/scf) * Inlet Gas Weight % * 1000

Methane (lb/hr) - (125.00 Mscf/hr) * (0.0781 lb/scf) * 28.16% * 1,000

Methane (lb/hr) = 2,749.12 lb/hr

 $MMBtu/hr\ Methane = Methane\ Heating\ Value\ (Btu/lb)* Hourly\ Methane\ Emissions\ (lb/hr)* 98\%\ of\ stream\ is\ combusted\ /\ 10^6$

MMBtu/hr Methanc = (23,861 Btu/lb) * (2,749.12 lb/hr) * 98% / (10^6)

MMBtu/hr Methane = 64.28 MMBtu/hr

An example calculation for the annual flare feed rate for Methane is demonstrated.

 $MMBtu/yr\ Methane = Methane\ Heating\ Value\ (Btu/lb)* Annual\ Methane\ Emissions\ (T/yr)* (2,000\ lb/T)* 98\%\ of\ stream\ is\ combusted\ /\ 10^6$

 $MMBtu/yr\ Methane = (23,861\ Btu/lb)*(722.47\ T/yr)*(2,000\ lb/T)*98\%\ /\ (10^6)$

MMBtu/yr Methane – 33,788.16 MMBtu/yr

^b Constituent Emission Rates were calculated from the known maximum blowdown volumes and density then proportioned using the Inlet Gas stream constituents weight percents. An example calculation for Methane emissions is as follows:

² An example calculation for the hourly flare feed rate for Methane is demonstrated.

DESIGN II for Windows

CONDENSATE SUMMAY REPORT

Simulation Result:

SOLUTION REACHED

Problem: Project: Task:

By:

At: 23-Jan-12 8:40 AM

Details for Stream 1

Stream 1 (Strm 1)

Thermodynamic Methods	K-Value: Vapor Visc: Liquid 1 Visc: Liquid 2 Visc:	PENG-ROB NBS81 NBS81 STEAM	Enthalpy: Vapor ThC: Liquid 1 ThC: Liquid 2 ThC:	PENG-ROB NBS81 NBS81 STEAM	Density: Vapor Den: Liquid 1 Den: Liquid 2 Den:	STD STD STD STD
Flowrates						
Component Name	Total bmol/hr	Vapor lbmol/hr	Liquid 1 lbmol/hr	Liquid 2 bmol/hr	Total mole %	K-Value
46 : NITROGEN	0.077806	0.047989	0.029816	0	0.082998	117.254
49 : CARBON DIOXIDE 2 : METHANE	0.050621 1.36019	0.011407 0.563769	0.039213 0.796424	0	0.053998 1.45096	21.1925 51.5698
3 : ETHANE	2.15606	0.283865	1.8722	0	2.29993	11.0458
4: PROPANE	4.02621	0.18874	3.83747	0	4.29487	3.58309
5 : ISOBUTANE	1.44081	0.031551	1.40926	0	1.53695	1.63103
6: N-BUTANE 9: 2,2-DIMETHYLPROP	4.30462 0	0.074008 0	4.23061 0	0	4.59186 0	1.27442 0.887809
7 : ISOPENTANE	2.86287	0.020679	2.84219	ő	3.05391	0.530044
8: N-PENTANE	3.6953	0.021917	3.67338	0	3.94188	0.434665
54 : 2,2-DIMETHYLBUTA	0	0	0	0	0	0.263313
55 : 2,3-DIMETHYLBUTA 52 : 2-METHYLPENTANE	0	0	0	0	0 0	0.20289 0.188093
53 : 3-METHYLPENTANE	ō	o	0	ő	Ö	0.170455
10 : N-HEXANE	5.69669	0.012326	5.68436	0	6.07682	0.157976
37 : METHYLCYCLOPENTA	0	0 000475	0 225754	0	0 251002	0.129156
40 : BENZENE 38 : CYCLOHEXANE	0.236229 0.724624	0.000475 0.001206	0.235754 0.723418	0	0.251992 0.772977	0.146904 0.121466
79: 2-METHYLHEXANE	0	0	0	0	0	0.06631
80 : 3-METHYLHEXANE	0	0	0	0	0	0.064389
11 : N-HEPTANE 39 : METHYLCYCLOHEXAN	6.64348 0	0.005395 0	6.63808 0	0	7.08679 0	0.059211
41 : TOLUENE	1.26176	0.000819	1.26095	0	1.34596	0.049302
12 : N-OCTANE	5.90854	0.00182	5.90672	0	6.30281	0.022445
45 : ETHYL BENZENE	0.42465	0.000123	0.424527	0	0.452986	0.021089
43 : M-XYLENE 42 : O-XYLENE	2.41573 0	0.000602 0	2.41512 0	0	2.57692 0	0.018158 0.009846
13 : N-NONANE	4.88957	0.000584	4.88899	0	5.21584	0.008699
14 : N-DECANE	45.5688	0.00209	45.5667	0	48.6095	0.003341
62 : WATER	0	0	0	0	0	0.034402
Total	93.7446	1.26937	92.4752	0	100	
Flowrates						
Component Name	Total lb/hr	Vapor lb/hr	Liquid 1 lb/hr	Liquid 2 lb/hr	Total mass %	
46: NITROGEN	2.1796	1.34434	0.835257	0	0.020729	
49 : CARBON DIOXIDE	2.22775	0.502016	1.72573	0	0.021187	
2 : METHANE 3 : ETHANE	21.8216	9.04454	12.777	0	0.207532	
4 : PROPANE	64.8284 177.532	8.53525 8.3223	56.2932 169.209	0	0.616546 1.6884	
5 : ISOBUTANE	83.7399	1.83374	81.9062	0	0.796403	
6 : N-BUTANE	250.185	4.30133	245.883	0	2.37936	
9: 2,2-DIMETHYLPROP 7: ISOPENTANE	0 206.545	0 1.4919	0 205.053	0	0 1.96433	
8 : N-PENTANE	266.601	1.58123	265.02	Ö	2.53549	
54: 2,2-DIMETHYLBUTA	0	0	0	0	0	
55 : 2,3-DIMETHYLBUTA 52 : 2-METHYLPENTANE	0	0	0	0	0.	
53 : 3-METHYLPENTANE	0	0	0	0	0	
10: N-HEXANE	490.895	1.06218	489.833	0	4.66862	
37 : METHYLCYCLOPENTA	0	0	0	0	0	
40 : BENZENE 38 : CYCLOHEXANE	18.4514 60.9814	0.037132 0.101506	18.4143 60.8799	0	0.175481 0.57996	
79 : 2-METHYLHEXANE	0	0.101300	0	0	0.57550	
80: 3-METHYLHEXANE	0	0	0	0	0	
11 : N-HEPTANE	665.663	0.540587	665.123	0	6.33075	
39 : METHYLCYCLOHEXAN 41 : TOLUENE	0 116.251	0 0.075451	0 116.176	0	0 1.1056	
12 : N-OCTANE	674.898	0.20787	674.69	ō	6.41857	
45 : ETHYL BENZENE	45.0809	0.013046	45.0678	0	0.428739	
43 : M-XYLENE	256.453	0.063906	256.39	0	2.43898	
42 : O-XYLENE 13 : N-NONANE	0 627.087	0 0.074868	0 627.013	0	0 5.96387	
14 : N-DECANE	6483.35	0.297305	6483.05	ő	61.6594	
62 : WATER	0	0	0	0	0	
Total	10514.8	39.4305	10475.3	0	100	

FI	O	w	ra	te	S
----	---	---	----	----	---

Component Name	Total ft3/hr	Vapor ft3/hr	Liquid 1 ft3/hr	Liquid 2 ft3/hr	Total volume %
46 : NITROGEN	4.66662	4.58651	0.080118	0	1.26192
49 : CARBON DIOXIDE	1.19559	1.09022	0.105368	0	0.323304
2 : METHANE	56.0214	53.8814	2.14003	Ö	15.149
3 : ETHANE	32.1606	27.1299	5.03069	Ö	8.69668
4 : PROPANE	28.35	18.0385	10.3115	Ō	7.66624
5 : ISOBUTANE	6.80219	3.01544	3.78676	0	1.83941
6: N-BUTANE	18.4411	7.07318	11.3679	0	4.98672
9:2,2-DIMETHYLPROP	0	0	0	0	0
7: ISOPENTANE	9.61348	1.97635	7.63713	0	2.59962
8 : N-PENTANE	11.9653	2.09469	9.87057	0	3.23557
54: 2,2-DIMETHYLBUTA	0	0	0	0	0
55 : 2,3-DIMETHYLBUTA	0	0	0	0	0
52:2-METHYLPENTANE 53:3-METHYLPENTANE	0	0	0	0	0
10 : N-HEXANE	16.4522	1.17807	15.2742	0	4.44892
37 : METHYLCYCLOPENTA	0	0	0	0	0
40 : BENZENE	0.678918	0.045435	0.633483	o	0.183589
38 : CYCLOHEXANE	2.05914	0.115277	1.94386	0	0.55682
79: 2-METHYLHEXANE	0	0	0	0	0
80: 3-METHYLHEXANE	0	0	0	0	0
11: N-HEPTANE	18.3525	0.515637	17.8369	0	4.96278
39 : METHYLCYCLOHEXAN	0	0	0	0	0
41 : TOLUENE	3.46649	0.078267	3.38823	0	0.937388
12 : N-OCTANE	16.0456	0.173929	15.8717	0	4.33896
45 : ETHYL BENZENE 43 : M-XYLENE	1.15247 6.5471	0.011745 0.057533	1.14073 6.48956	0	0.311645 1.77043
42 : O-XYLENE	0.5471	0.057555	0.40900	0	1.77043
13 : N-NONANE	13.1928	0.055792	13.137	0	3.56751
14 : N-DECANE	122.64	0.199714	122.44	0	33.1635
62 : WATER	0	0	0	Ö	0
Total	369.803	121.318	248.486	0	100
Flowrates					
Component Name	Total	Vapor	Liquid 1	Liquid 2	Total
	SCF/hr	SCF/hr	SCF/hr	SCF/hr	std vol %
46 : NITROGEN	18.2277	18.2111	0.016598	0	2.53568
49 : CARBON DIOXIDE	4.36249	4.32883	0.033662	0	0.606871
2 : METHANE	214.624	213.941	0.683216	Ö	29.8566
3 : ETHANE	110.254	107.722	2.53254	0	15.3376
4: PROPANE	76.9711	71.6236	5.34746	0	10.7075
5 : ISOBUTANE	14.3061	11.9731	2.33303	0	1.99014
6 : N-BUTANE	34.8351	28.0847	6.75042	0	4.84595
9 : 2,2-DIMETHYLPROP	0	0	0	0	0
7 : ISOPENTANE 8 : N-PENTANE	13.1114 15.0506	7.84729 8.31716	5.26415 6.73341	0	1.82395 2.0937
54 : 2,2-DIMETHYLBUTA	0	0.51710	0.73541	Ö	0
55 : 2,3-DIMETHYLBUTA	0	0	0	ō	Ō
52: 2-METHYLPENTANE	0	0	0	0	0
53: 3-METHYLPENTANE	0	0	0	0	0
10: N-HEXANE	16.5061	4.67763	11.8284	0	2.29618
37 : METHYLCYCLOPENTA	0	0	0	0	0
40 : BENZENE	0.514218	0.180404	0.333814	0	0.071533
38 : CYCLOHEXANE 79 : 2-METHYLHEXANE	1.70369 0	0.457718 0	1.24597 0	0	0.237002
80 : 3-METHYLHEXANE	0	0	0	0	0
11 : N-HEPTANE	17.5446	2.04739	15.4973	0	2.44065
39 : METHYLCYCLOHEXAN	0	0	0	ő	0
41 : TOLUENE	2.44748	0.310768	2.13672	0	0.340472
12: N-OCTANE	15.9933	0.6906	15.3027	0	2.22485
45 : ETHYL BENZENE	0.875654	0.046635	0.829019	0	0.121813
43 : M-XYLENE	4.96053	0.22844	4.73209	0	0.690064
42 : O-XYLENE	0	0	0	0	0
13 : N-NONANE	14.1496	0.221529	13.9281	0	1.96837
14: N-DECANE 62: WATER	142.412 0	0.792983 0	141.619 0	0	19.811 0
OZ . WATER	J	U	U	U	U
Total	718.85	481.703	237.147	0	100

Properties

Temperature Pressure Enthalpy Entropy	F psia Btu/hr Btu/hr/R	130 64.696 -1128223 -1050.962		
Vapor Fraction	DUMINK	0.013540677		
Vapor Fraction		0.010040077		
		Total	Vapor	Liquid 1
Flowrate	lbmol/hr	93.7446	1.2694	92.4752
Flowrate	lb/hr	10514.7702	39.4305	10475.339
Mole Fraction		1	0.013541	0.986459
Mass Fraction		1	0.00375	0.99625
Molecular Weight	D ((II - I	112.164	31.0632	113.2773
Enthalpy	Btu/lbmol	-12035.0693	1211.1444	-12216.894
Enthalpy	Btu/lb	-107.2988	38.9897	-107.8495
Entropy	Btu/lbmol/R	-11.2109	2.6422	-11.4011
Entropy	Btu/lb/R	-0.099951	0.085059	-0.100647
Cp	Btu/lbmol/R		14.2671	60.3206
Cp Cv	Btu/lb/R Btu/lbmol/R		0.4593 12.0867	0.5325 52.8342
Cv	Btu/lb/R		0.3891	0.4664
Cp/Cv	DIU/ID/R			
Density	lb/ft3		1.1804 0.325019	1.1417 42.1567
Z-Factor	ID/ILO		0.325019	0.027475
Flowrate (T-P)	ft3/s		0.033699	0.027473
Flowrate (T-P)	gal/min		0.055099	30.982
Flowrate (STP)	MMSCFD		0.011561	30.902
Flowrate (STP)	gal/min		0.011301	29.5664
Specific Gravity	GPA STP			29.3004
Viscosity	cP		0.01139	0.461242
Thermal Conductivity	Btu/hr/ft/R		0.016448	0.068162
Surface Tension	dyne/cm		0.010440	17.1421
Reid Vapor Pressure (ASTM-A	psia			15.16
True Vapor Pressure at 100 F	psia			78.74
Critical Temperature (Cubic E	F	594.8472		10.11
Critical Pressure (Cubic EOS)	psia	476.3904		
Dew Point Temperature	F	417.088		
Bubble Point Temperature	F	63.7562		
Water Dew Point Temperature of	ould not be calcu	lated		
Stream Vapor Pressure	psia	91.6561		
Latent Heat of Vaporization (N	Btu/lb	111.7666		
Latent Heat of Vaporization (P	Btu/lb	284.729		
Vapor Sonic Velocity	ft/s	1030.2		
CO2 Freeze Up		No		
Heating Value (gross)	Btu/SCF	6107.15		
Heating Value (net)	Btu/SCF	5670.27		
Wobbe Number	Btu/SCF	2932.94		
Average Hydrogen Atoms		17.367		
Average Carbon Atoms		7.8782		
Hydrogen to Carbon Ratio		2.2044		

Details for Stream 2

Stream 2 (Flash Gas)

Thermodynamic Methods	K-Value: Vapor Visc:	PENG-ROB NBS81	Enthalpy: Vapor ThC:	PENG-ROB NBS81	Density: Vapor Den:	STD STD
Flowrates						
Component Name	Total lbmol/hr	Vapor Ibmol/hr	Incipient Liquid 1 mol fra	Liquid 2 Ibmol/hr	Total mole %	K-Value
46 : NITROGEN	0.075098	0.075098	0.00003048	0	1.529	501.596
49 : CARBON DIOXIDE	0.039197	0.039197	0.000129	0	0.798054	62.0591
2: METHANE 3: ETHANE	1.24339 1.34402	1.24339 1.34402	0.001315 0.009141	0	25.3154 27.3644	192.529 29.9354
4 : PROPANE	1.20142	1.20142	0.031799	0	24.4609	7.69238
5 : ISOBUTANE	0.204981	0.204981	0.013912	0	4.17343	2.99992
6 : N-BUTANE	0.469686	0.469686	0.04317	0	9.56285	2.21515
9 : 2,2-DIMETHYLPROP	0 0.117024	0	0	0	0	1.48838
7 : ISOPENTANE 8 : N-PENTANE	0.117024	0.117024 0.118491	0.03091 0.040264	0	2.38261 2.41249	0.770817 0.599162
54 : 2,2-DIMETHYLBUTA	0.110-01	0.110431	0.040204	o	0	0.360909
55 : 2,3-DIMETHYLBUTA	0	0	0	0	0	0.263381
52 : 2-METHYLPENTANE	0	0	0	0	0	0.236664
53 : 3-METHYLPENTANE 10 : N-HEXANE	0 0.055126	0 0.055126	0 0.063507	0	0 1.12238	0.210746 0.176732
37 : METHYLCYCLOPENTA	0.055126	0.055126	0.063507	0	0	0.176732
40 : BENZENE	0.002173	0.002173	0.002635	ŏ	0.044233	0.167879
38 : CYCLOHEXANE	0.005364	0.005364	0.008097	0	0.109201	0.13487
79 : 2-METHYLHEXANE	0	0	0	0	0	0.065693
80:3-METHYLHEXANE 11:N-HEPTANE	0 0.019568	0 0.019568	0 0.074566	0 0	0 0.398398	0.066054 0.053429
39 : METHYLCYCLOHEXAN	0.019308	0.019308	0.074500	0	0.396396	0.053429
41 : TOLUENE	0.002987	0.002987	0.01417	ő	0.060807	0.042912
12 : N-OCTANE	0.005375	0.005375	0.066452	0	0.109426	0.016467
45 : ETHYL BENZENE	0.000378	0.000378	0.004776	0	0.007693	0.016108
43: M-XYLENE 42: O-XYLENE	0.001797 0	0.001797 0	0.027174 0	0	0.036597 0	0.013468 0.007514
13 : N-NONANE	0.001408	0.001408	0.055026	0	0.028676	0.007314
14 : N-DECANE	0.004096	0.004096	0.512926	0	0.083399	0.001626
62 : WATER	0	0	0	0	0	0.024719
Total	4.91158	4.91158	1	0	100	
Flowrates						
Component Name	Total lb/hr	Vapor lb/hr	Incipient Liquid 1 mass fra	Liquid 2 Ib/hr	Total mass %	
46 : NITROGEN	2.10374	2.10374	0.000007	0	1.15222	
49 : CARBON DIOXIDE	1.72501	1.72501	0.000049	0	0.944786	
2 : METHANE	19.9476	19.9476	0.000181	0	10.9253	
3 : ETHANE 4 : PROPANE	40.4121 52.9753	40.4121 52.9753	0.002363 0.01206	0	22.1336 29.0144	
5 : ISOBUTANE	11.9135	11.9135	0.006952	0	6.52501	
6 : N-BUTANE	27.2982	27.2982	0.02157	0	14.9512	
9: 2,2-DIMETHYLPROP	0	0	0	0	0	
7 : ISOPENTANE	8.4428	8.4428	0.01917	0	4.62411	
8 : N-PENTANE 54 : 2,2-DIMETHYLBUTA	8.54867 0	8.54867 0	0.02498 0	0	4.68209 0	
55 : 2,3-DIMETHYLBUTA	0	0	0	0	0	
52 : 2-METHYLPENTANE	0	0	0	0	0	
53:3-METHYLPENTANE	0	0	0	0	0	
10 : N-HEXANE	4.75036	4.75036	0.04705	0	2.60176	
37 : METHYLCYCLOPENTA 40 : BENZENE	0 0.169691	0 0.169691	0 0.001769	0	0 0.09294	
38 : CYCLOHEXANE	0.451371	0.451371	0.001709	0	0.247215	
79 : 2-METHYLHEXANE	0	0	0	Ö	0	
80:3-METHYLHEXANE	0	0	0	0	0	
11 : N-HEPTANE	1.96064	1.96064	0.06424	0	1.07384	
39: METHYLCYCLOHEXAN 41: TOLUENE	0 275167	0 275167	0 01122	0	0 150700	
12 : N-OCTANE	0.275167 0.613904	0.275167 0.613904	0.01122 0.06526	0	0.150709 0.336234	
45 : ETHYL BENZENE	0.040114	0.040114	0.004359	0	0.02197	
43 : M-XYLENE	0.19082	0.19082	0.0248	0	0.104511	
42 : O-XYLENE	0	0	0	0	0	
13 : N-NONANE	0.180633	0.180633	0.06068	0	0.098932	
14 : N-DECANE 62 : WA⊤ER	0.582795 0	0.582795 0	0.6274 0	0	0.319195 0	
Total	182.582	182.582	1	0	100	
	T tal Mcc	Problems				

F	lo	W	ra	te	S
---	----	---	----	----	---

Component Name	Total ft3/hr	Vapor ft3/hr	Liquid 1 ft3/hr	Liquid 2 ft3/hr	Total volume %
46 : NITROGEN	28.7356	28.7356	0	0	1.529
49 : CARBON DIOXIDE	14.9984	14.9984	0	0	0.798054
2 : METHANE	475.773	475.773	0	0	25.3154
3 : ETHANE	514.281	514.281	0	0	27.3644
4 : PROPANE	459.713	459.713	0	0	24.4609
5 : ISOBUTANE	78.4346	78.4346	0	0	4.17344
6: N-BUTANE	179.722	179.722	0	0	9.56285
9 : 2,2-DIMETHYLPROP	0	0	0	0	0
7 : ISOPENTANE	44.7783	44.7783	0	0	2.38261
8 : N-PENTANE 54 : 2,2-DIMETHYLBUTA	45.3398 0	45.3398 0	0	0	2.41249 0
55 : 2.3-DIMETHYLBUTA	0	0	0	0	0
52 : 2-METHYLPENTANE	0	Ö	o o	0	Ö
53: 3-METHYLPENTANE	0	0	0	0	0
10: N-HEXANE	21.0937	21.0937	0	0	1.12238
37 : METHYLCYCLOPENTA	0	0	0	0	0
40 : BENZENE	0.8313	0.8313	0	0	0.044233
38 : CYCLOHEXANE	2.0523	2.0523	0	0	0.109201
79 : 2-METHYLHEXANE	0	0 0	0	0	0
80:3-METHYLHEXANE 11:N-HEPTANE	7.48741	7.48741	0	0	0.398398
39 : METHYLCYCLOHEXAN	0	0	0	0	0.598598
41 : TOLUENE	1.1428	1.1428	0	0	0.060807
12 : N-OCTANE	2.05654	2.05654	0	0	0.109426
45 : ETHYL BENZENE	0.144585	0.144585	0	0	0.007693
43: M-XYLENE	0.687789	0.687789	0	0	0.036597
42 : O-XYLENE	0	0	0	0	0
13 : N-NONANE	0.538932	0.538932	0	0	0.028676
14 : N-DECANE	1.56739	1.56739	0	0	0.083399
62 : WATER	0	0	0	0	0
Total	1879.38	1 07848	0	0	100
Flowrates					
Component Name	Total SCF/hr	Vapor SCE/hr	Liquid 1	Liquid 2 SCE/hr	Total
Component Name	Total SCF/hr	Vapor SCF/hr	Liquid 1 SCF/hr	Liquid 2 SCF/hr	Total std vol %
46 : NITROGEN			SCF/hr 0	SCF/hr 0	
46 : NITROGEN 49 : CARBON DIOXIDE	SCF/hr 28.4984 14.8746	SCF/hr 28.4984 14.8746	SCF/hr 0 0	SCF/hr 0 0	std vol % 1.529 0.798054
46 : NITROGEN 49 : CARBON DIOXIDE 2 : METHANE	SCF/hr 28.4984 14.8746 471.845	SCF/hr 28.4984 14.8746 471.845	SCF/hr 0 0 0	SCF/hr 0 0 0	std vol % 1.529 0.798054 25.3154
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE	SCF/hr 28.4984 14.8746 471.845 510.034	SCF/hr 28.4984 14.8746 471.845 510.034	SĆF/hr 0 0 0 0	SCF/hr 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917	SCF/hr 28.4984 14.8746 471.845 510.034 455.917	SCF/hr 0 0 0 0 0	SCF/hr 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787	SCF/hr 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238	SCF/hr 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787	SCF/hr 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0	SCF/hr 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 54: 2,2-DIMETHYLBUTA	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 2.38261
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 54: 2,2-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 2.38261 2.41249 0 0
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 54: 2,2-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 52: 2-METHYLPENTANE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 2.38261 2.41249 0 0
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 54: 2,2-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 53: 3-METHYLPENTANE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 2.38261 2.41249 0 0 0
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 54: 2,2-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 52: 2-METHYLPENTANE 53: 3-METHYLPENTANE 10: N-HEXANE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 2.38261 2.41249 0 0 0 1.12238
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 54: 2,2-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 52: 2-METHYLPENTANE 53: 3-METHYLPENTANE 10: N-HEXANE 37: METHYLOPENTA	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 0 20.9196 0	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 0 20.9196	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 2.38261 2.41249 0 0 0 1.12238
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 54: 2,2-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 50: 2,3-DIMETHYLBUTA 51: 2,3-DIMETHYLBUTA 52: 2-METHYLPENTANE 10: N-HEXANE 37: METHYLPENTANE 40: BENZENE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196 0 0.824436	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196 0 0.824436	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 2.38261 2.41249 0 0 0 1.12238 0 0.044233
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 54: 2,2-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 52: 2-METHYLPENTANE 53: 3-METHYLPENTANE 10: N-HEXANE 37: METHYLOPENTA	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 0 20.9196 0	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 0 20.9196	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 2.38261 2.41249 0 0 0 1.12238
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 54: 2,2-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 55: 2; 2-METHYLBUTA 53: 3-METHYLPENTANE 10: N-HEXANE 37: METHYLCYCLOPENTA 40: BENZENE 38: CYCLOHEXANE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 0 20.9196 0 0.824436 2.03536	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196 0 0.824436 2.03536	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 2.38261 2.41249 0 0 0 1.12238 0 0.044233 0.109201
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 54: 2,2-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 53: 3-METHYLPENTANE 10: N-HEXANE 37: METHYLCYCLOPENTA 40: BENZENE 38: CYCLOHEXANE 79: 2-METHYLHEXANE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 0 20.9196 0 0.824436 2.03536 0	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 0 20.9196 0 0.824436 2.03536 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 2.38261 2.41249 0 0 0 1.12238 0 0.044233 0.109201
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLPENTANE 50: N-HEXANE 10: N-HEXANE 37: METHYLPENTANE 40: BENZENE 38: CYCLOHEXANE 79: 2-METHYLHEXANE 80: 3-METHYLHEXANE 80: 3-METHYLHEXANE 81: N-HEPTANE 80: 3-METHYLHEXANE 11: N-HEPTANE 39: METHYLCYCLOHEXAN	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196 0 0.824436 2.03536 0 7.42559 0	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 0 20.9196 0 0.8224436 2.03536 0 0 7.42559 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 2.38261 2.41249 0 0 1.12238 0 0.044233 0.109201 0 0.398398
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 54: 2,2-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 52: 2-METHYLPENTANE 10: N-HEXANE 37: METHYLPENTANE 10: N-HEXANE 38: CYCLOHEXANE 79: 2-METHYLHEXANE 80: 3-METHYLHEXANE 80: 3-METHYLHEXANE 80: 3-METHYLHEXANE 11: N-HEPTANE 39: METHYLHEXANE 11: N-HEPTANE 39: METHYLCYCLOHEXAN 41: TOLUENE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196 0 0.824436 2.03536 0 0 7.42559 0 1.13336	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 0 20.9196 0 0.824436 2.03536 0 0 7.42559 0 1.13336	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 0.38261 2.41249 0 0 0 1.12238 0 0.044233 0.109201 0 0.398398 0 0.060807
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 55: 2,3-DIMETHYLBUTA 55: 2,2-DIMETHYLBUTA 52: 2-METHYLPENTANE 10: N-HEXANE 37: METHYLPENTANE 40: BENZENE 38: CYCLOHEXANE 79: 2-METHYLHEXANE 80: 3-METHYLHEXANE 11: N-HEPTANE 99: METHYLHEXANE 11: N-HEPTANE 11: N-HEPTANE 11: N-HEPTANE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 0 20.9196 0 0.824436 2.03536 0 7.42559 0 1.13336 2.03956	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196 0 0.824436 2.03536 0 7.42559 0 1.13336 2.03956	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 0.38261 2.41249 0 0 0 1.12238 0 0.044233 0.109201 0 0.398398 0 0.060807 0.109426
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 50: 3-METHYLPENTANE 10: N-HEXANE 37: METHYLCYCLOPENTA 40: BENZENE 38: CYCLOHEXANE 79: 2-METHYLHEXANE 80: 3-METHYLHEXANE 80: 3-METHYLHEXANE 11: N-HEPTANE 90: METHYLHEXANE 11: N-HEPTANE 12: N-OCTANE 45: ETHYL BENZENE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196 0 0.824436 2.03536 0 0 7.42559 0 1.13336 2.03956 0.143391	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 0 20.9196 0 0.824436 2.03536 0 0 7.42559 0 1.13336 2.03956 0.143391	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 2.38261 2.41249 0 0 0.112238 0 0.044233 0.109201 0 0.398398 0 0.060807 0.109426 0.007693
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 54: 2,2-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 53: 3-METHYLPENTANE 10: N-HEXANE 37: METHYLCYCLOPENTA 40: BENZENE 38: CYCLOHEXANE 79: 2-METHYLHEXANE 11: N-HEPTANE 39: METHYLCYCLOHEXAN 41: TOLUENE 12: N-OCTANE 45: ETHYL BENZENE 43: M-YLENE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 0 20.9196 0 0.824436 2.03536 0 7.42559 0 1.13336 2.03956 0.143391 0.68211	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 0 20.9196 0 0.824436 2.03536 0 0 7.42559 0 1.13336 2.03956 0.143391 0.68211	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 2.38261 2.41249 0 0 0 1.12238 0 0.044233 0.109201 0 0.398398 0 0.060807 0.109426 0.007693 0.036597
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 60: N-HEXANE 10: N-HEXANE 11: N-HEPTANE 12: N-HEYCLOHEXANE 11: N-HEPTANE 11: TOLUENE 12: N-OCTANE 12: N-OCTANE 13: M-YCLENE 14: M-YLENE 15: N-OCTANE 16: M-YLENE 16: M-YLENE 17: M-YLENE 17: M-YLENE 18: M-YLENE 18: M-YLENE 19: M-YLENE 19: M-YLENE 19: M-YLENE 19: M-YLENE 10: M-YLENE 10: M-YLENE 10: M-YLENE 10: M-YLENE 10: M-YLLENE 10	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196 0 0 0.824436 2.03536 0 0 7.42559 0 1.13336 2.03956 0.143391 0.68211	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196 0 0.824436 2.03536 0 0 7.42559 0 1.13336 2.03956 0.143391 0.68211	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 0.38261 2.41249 0 0 0.112238 0 0.044233 0.109201 0 0.398398 0 0.060807 0.109426 0.007693 0.036597
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 3: ETHANE 5: ISOBUTANE 6: NBUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 50: 3-METHYLPENTANE 10: N-HEXANE 37: METHYLPENTANE 40: BENZENE 38: CYCLOHEXANE 79: 2-METHYLHEXANE 11: N-HEYANE 11: N-HEYANE 11: N-HEYANE 11: N-HEYANE 12: METHYLCYCLOHEXAN 11: N-HEYANE 12: N-OCTANE 13: ETHYL BUZENE 14: M-XYLENE 14: N-VYLENE 14: N-NONANE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196 0 0.824436 2.03536 0 0 7.42559 0 1.13336 2.03956 0.143391 0.68211 0 0.534482	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196 0 0.824436 2.03536 0 0 7.42559 0 1.13336 2.03956 0.143391 0.68211 0 0.534482	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 2.38261 2.41249 0 0 0 1.12238 0 0.044233 0.109201 0 0 0.398398 0 0.060807 0.109426 0.007693 0.0028676
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 60: N-HEXANE 10: N-HEXANE 11: N-HEPTANE 12: N-HEYCLOHEXANE 11: N-HEPTANE 11: TOLUENE 12: N-OCTANE 12: N-OCTANE 13: M-YCLENE 14: M-YLENE 15: N-OCTANE 16: M-YLENE 16: M-YLENE 17: M-YLENE 17: M-YLENE 18: M-YLENE 18: M-YLENE 19: M-YLENE 19: M-YLENE 19: M-YLENE 19: M-YLENE 10: M-YLENE 10: M-YLENE 10: M-YLENE 10: M-YLENE 10: M-YLLENE 10	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196 0 0 0.824436 2.03536 0 0 7.42559 0 1.13336 2.03956 0.143391 0.68211	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196 0 0.824436 2.03536 0 0 7.42559 0 1.13336 2.03956 0.143391 0.68211	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	std vol % 1.529 0.798054 25.3154 27.3644 24.4609 4.17343 9.56285 0 0.38261 2.41249 0 0 0.112238 0 0.044233 0.109201 0 0.398398 0 0.060807 0.109426 0.007693 0.036597
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 8: N-PENTANE 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA 57: METHYLPENTANE 10: N-HEXANE 37: METHYLPENTANE 38: CYCLOHEXANE 79: 2-METHYLPENTANE 11: N-HEPTANE 39: METHYLEVCLOPENTA 40: BENZENE 39: METHYLEVCLOPENTA 40: BENZENE 39: METHYLEVCLOPENTA 40: N-HEYANE 40: N-HEYANE 40: N-HEYANE 40: N-HEYANE 40: S-METHYLHEXANE 40: N-HEYANE 40: N-HEYANE 40: N-HEYANE 40: N-HEYANE 40: N-HEYANE 40: N-HEYANE 41: N-HEYANE 41: N-HEYANE 42: O-XYLENE 43: M-XYLENE 44: N-DECANE	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 20.9196 0 0.824436 2.03536 0 7.42559 0 1.13336 2.03956 0.143391 0.68211 0 0.5344482 1.55445	SCF/hr 28.4984 14.8746 471.845 510.034 455.917 77.787 178.238 0 44.4086 44.9654 0 0 0 0 20.9196 0 0 20.9196 0 0 0.824436 2.03536 0 0 7.42559 0 1.13336 2.03956 0.143391 0.68211 0 0.534482 1.55445	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SCF/hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.529 0.798054 25.3154 27.3644 27.3644 24.4609 4.17343 9.56285 0 2.38261 2.41249 0 0 0 1.12238 0 0.044233 0.109201 0 0.398398 0 0.060807 0.109426 0.007693 0.036597 0 0.028676 0.083399

Properties

Temperature Pressure Enthalpy Entropy	F psia Btu/hr Btu/hr/R	70 14.7 2614.254 22.72829	
Vapor Fraction		1	
		Total	Vapor
Flowrate	lbmol/hr	4.9116	4.9116
Flowrate	lb/hr	182.5824	182.5824
Mole Fraction		1	1
Mass Fraction		1	1
Molecular Weight		9	37.1739
Enthalpy	Btu/lbmol	532.2637	532.2637
Enthalpy	Btu/lb	14.3182	14.3182
Entropy	Btu/lbmol/R	4.6275	4.6275
Entropy	Btu/lb/R	0.124482	0.124482
Ср	Btu/lbmol/R		15.3742
Ср	Btu/lb/R		0.4136
Cv	Btu/lbmol/R		13.309
Cv	Btu/lb/R		0.358
Cp/Cv	IL (A)		1.1552
Density Z-Factor	lb/ft3		0.09715
Flowrate (T-P)	ft3/s		0.989704 0.522049
Flowrate (STP)	MMSCFD		0.044733
Viscosity	cP		0.009251
Thermal Conductivity	Btu/hr/ft/R		0.012145
Critical Temperature (Cubic E	F	189.2306	0.012143
Critical Pressure (Cubic EOS)	psia	1184.431	
Dew Point Temperature	F	70.0076	
Bubble Point Temperature	F	-273.2523	
Water Dew Point Temperature	ould not be calcu		
Stream Vapor Pressure	psia	937.226	
Vapor Sonic Velocity	ft/s	894.11	
CO2 Freeze Up		No	
Heating Value (gross)	Btu/SCF	2097.32	
Heating Value (net)	Btu/SCF	1925.01	
Wobbe Number	Btu/SCF	1839.5	
Average Hydrogen Atoms		6.8501	
Average Carbon Atoms		2.4634	
Hydrogen to Carbon Ratio		2.7808	
Methane Number		40.55	
Motor Octane Number		98.31	

Details for Stream 3

Stream 3 (Condensate)

Thermodynamic Methods	K-Value: Liquid 1 Visc: Liquid 2 Visc:	PENG-ROB NBS81 NBS81	Enthalpy: Liquid 1 ThC: Liquid 2 ThC:	PENG-ROB NBS81 NBS81	Density: Liquid 1 Den: Liquid 2 Den:	STD STD STD
Flowrates	E14010 Z 1100.		Enquise Title.	112201	214010 2 2 2 111	
Component Name	Total lbmol/hr	Vapor Ibmol/hr	Liquid 1 lbmol/hr	Liquid 2 lbmol/hr	Total mole %	K-Value
46: NITROGEN	0.002708	0	0.002708	0	0.003048	
49 : CARBON DIOXIDE	0.011424	0	0.011424	0	0.01286	
2 : METHANE	0.116806	0	0.116806	0	0.131489	
3 : ETHANE	0.812037	0	0.812037	0	0.914117	
4 : PROPANE 5 : ISOBUTANE	2.82479 1.23583	0	2.82479 1.23583	0	3.17989 1.39118	
6 : N-BUTANE	3.83494	0	3.83494	0	4.31702	
9: 2,2-DIMETHYLPROP	0	0	0	0	0	
7: ISOPENTANE	2.74585	0	2.74585	0	3.09102	
8 : N-PENTANE	3.57681	0	3.57681	0	4.02644	
54 : 2,2-DIMETHYLBUTA	0	0	0	0	0	
55 : 2,3-DIMETHYLBUTA 52 : 2-METHYLPENTANE	0	0 0	0	0	0	
53 : 3-METHYLPENTANE	0	0	0	0	0	
10 : N-HEXANE	5.64156	0	5.64156	0	6.35075	
37 : METHYLCYCLOPENTA	0	0	0	0	0	
40 : BENZENE	0.234057	0	0.234057	0	0.263479	
38 : CYCLOHEXANE	0.71926	0	0.71926	0	0.809677	
79:2-METHYLHEXANE 80:3-METHYLHEXANE	0	0	0	0	0	
11 : N-HEPTANE	6.62391	0	6.62391	0	7.45659	
39: METHYLCYCLOHEXAN	0	0	0	0	0	
41 : TOLUENE	1.25878	0	1.25878	0	1.41702	
12 : N-OCTANE	5.90317	0	5.90317	0	6.64524	
45 : ETHYL BENZENE 43 : M-XYLENE	0.424272 2.41393	0	0.424272 2.41393	0	0.477607 2.71738	
42 : O-XYLENE	0	Ö	0	ō	0	
13: N-NONANE	4.88816	0	4.88816	0	5.50264	
14 : N-DECANE	45.5647	0	45.5647	0	51.2926	
62 : WATER	0	0	0	0	0	
Total	88.833	0	88.833	0	100	
Flowrates						
Component Name	Total lb/hr	Vapor lb/hr	Liquid 1 Ib/hr	Liquid 2 Ib/hr	Total mass %	
46 : NITROGEN	0.075856	0	0.075856	0	0.000734	
49 : CARBON DIOXIDE	0.502737	0	0.502737	0	0.004866	
2 : METHANE	1.87391	0	1.87391	0	0.018137	
3 : ETHANE 4 : PROPANE	24.4163	0	24.4163	0	0.236313	
5 : ISOBUTANE	124.556 71.8264	0	124.556 71.8264	0	1.20552 0.695171	
6 : N-BUTANE	222.886	0	222.886	0	2.1572	
9: 2,2-DIMETHYLPROP	0	0	0	0	0	
7 : ISOPENTANE	198.102	0	198.102	0	1.91733	
8 : N-PENTANE 54 : 2,2-DIMETHYLBUTA	258.053 0	0	258.053 0	0	2.49756 0	
55 : 2,3-DIMETHYLBUTA	0	O	0	Ō	0	
52: 2-METHYLPENTANE	0	0	0	0	0	
53 : 3-METHYLPENTANE	0	0	0	0	0	
10 : N-HEXANE 37 : METHYLCYCLOPENTA	486.145 0	0	486.145 0	0	4.70515 0	
40 : BENZENE	18.2817	0	18.2817	0	0.176939	
38 : CYCLOHEXANE	60.5301	o	60.5301	0	0.58584	
79: 2-METHYLHEXANE	0	0	0	0	0	
80 : 3-METHYLHEXANE	0	0	0	0	0	
11: N-HEPTANE 39: METHYLCYCLOHEXAN	663.703 0	0	663.703 0	0	6.42364 0	
41 : TOLUENE	115.976	0	115.976	0	1.12248	
12: N-OCTANE	674.284	0	674.284	0	6.52605	
45 : ETHYL BENZENE	45.0408	0	45.0408	0	0.435927	
43: M-XYLENE 42: O-XYLENE	256.263 0	0	256.263 0	0	2.48024 0	
13 : N-NONANE	626.907	0	626.907	0	6.06751	
14: N-DECANE	6482.77	0	6482.77	0	62.7434	
62 : WATER	0	0	0	0	0	
Total	10332.2	0	10332.2	0	100	

F	ю	w	ra	te	5

Component Name	Total ft3/hr	Vapor ft3/hr	Liquid 1 ft3/hr	Liquid 2 ft3/hr	Total volume %
46 : NITROGEN	0.007128	0	0.007128	0	0.003048
49 : CARBON DIOXIDE	0.030071	0	0.030071	0	0.01286
2 : METHANE	0.307475	0	0.307475	0	0.131489
3 : ETHANE	2.13758	0	2.13758	0	0.914117
4 : PROPANE	7.43588	0	7.43588	0	3.17989
5 : ISOBUTANE	3.25315	0	3.25315	0	1.39118
6 : N-BUTANE	10.0949	0	10.0949	0	4.31702
9: 2,2-DIMETHYLPROP	0	0	0	0	0
7 : ISOPENTANE	7.22807	0	7.22807	0	3.09102
8 : N-PENTANE	9.41546	0	9.41546	0	4.02644
54 : 2,2-DIMETHYLBUTA 55 : 2,3-DIMETHYLBUTA	0	0	0	0	0
52 : 2-METHYLPENTANE	0	0	0	0	0
53 : 3-METHYLPENTANE	Ö	Ö	ő	Õ	Ö
10 : N-HEXANE	14.8506	0	14.8506	0	6.35075
37: METHYLCYCLOPENTA	0	0	0	0	0
40 : BENZENE	0.616122	0	0.616122	0	0.263479
38 : CYCLOHEXANE	1.89335	0	1.89335	0	0.809677
79: 2-METHYLHEXANE	0	0	0	0	0
80 : 3-METHYLHEXANE	0	0	0	0	0
11: N-HEPTANE 39: METHYLCYCLOHEXAN	17.4365 0	0	17.4365 0	0	7.45659 0
41 : TOLUENE	3.31356	0	3.31356	0	1.41702
12 : N-OCTANE	15.5393	0	15.5393	0	6.64524
45 : ETHYL BENZENE	1.11684	o o	1.11684	Ö	0.477607
43 : M-XYLENE	6.35433	0	6.35433	0	2.71738
42 : O-XYLENE	0	0	0	0	0
13: N-NONANE	12.8674	0	12.8674	0	5.50264
14 : N-DECANE	119.943	0	119.943	0	51.2926
62 : WATER	0	0	0	0	0
Total	233.841	0	233.841	0	100
Flowrates					
Component Name	Total SCF/hr	Vapor SCF/hr	Liquid 1 SCF/hr	Liquid 2 SCF/hr	Total std vol %
46: NITROGEN	0.001507	0	0.001507	0	0.000649
49 : CARBON DIOXIDE	0.009806	0	0.009806	0	0.004222
2 : METHANE	0.100202	0	0.100202	0	0.043144
3 : ETHANE 4 : PROPANE	1.09845 3.93631	0	1.09845 3.93631	0	0.472962 1.69486
5 : ISOBUTANE	2.04592	0	2.04592	0	0.880911
6 : N-BUTANE	6.11907	Ō	6.11907	0	2.63469
9: 2,2-DIMETHYLPROP	0	0	0	0	0
7: ISOPENTANE	5.08571	0	5.08571	0	2.18976
8: N-PENTANE	6.55639	0	6.55639	0	2.82299
54 : 2,2-DIMETHYLBUTA	0	0	0	0	0
55 : 2,3-DIMETHYLBUTA 52 : 2-METHYLPENTANE	0	0	0 0	0	0
53 : 3-METHYLPENTANE	0	0	0	0	0
10 : N-HEXANE	11.7394	Ö	11.7394	ő	5.05462
37 : METHYLCYCLOPENTA	0	0	0	0	0
40 : BENZENE	0.331411	0	0.331411	0	0.142696
38 : CYCLOHEXANE	1.23881	0	1.23881	0	0.533395
79: 2-METHYLHEXANE	0	0	0	0	0
80 : 3-METHYLHEXANE	0	0	0	0	0
11: N-HEPTANE 39: METHYLCYCLOHEXAN	15.4642	0	15.4642	0	6.65841
41 : TOLUENE	0 2.13304	0	0 2.13304	0	0 0.918425
12 : N-OCTANE	15.2935	0	15.2935	0	6.58493
45 : ETHYL BENZENE	0.828521	ő	0.828521	ŏ	0.356737
43 : M-XYLENE	4.72974	0	4.72974	0	2.03649
42 : O-XYLENE	0	0	0	0	0
13 : N-NONANE	13.9257	0	13.9257	0	5.996
14 : N-DECANE	141.612	0	141.612	0	60.9741
62 : WATER	0	0	0	0	0
Total	232.25	0	232.25	0	100

Properties

Temperature Pressure Enthalpy Entropy	F psia Btu/hr Btu/hr/R	70 14.7 -1434814 -1603.578	
Vapor Fraction	Bulling	0	
		Total	Liquid 1
Flowrate	lbmol/hr	88.833	88.833
Flowrate	lb/hr	10332.1878	10332.1878
Mole Fraction Mass Fraction		1	1 1
Molecular Weight		116.3102	116.3102
Enthalpy	Btu/lbmol	-16151.8127	-16151.8127
Enthalpy	Btu/lb	-138.8684	-138.8684
Entropy	Btu/lbmol/R	-18.0516	-18.0516
Entropy	Btu/lb/R	-0.155202	-0.155202
Ср	Btu/lbmol/R		57.7007
Ср	Btu/lb/R		0.4961
Cv Cv	Btu/lbmol/R Btu/lb/R		50.7677 0.4365
Cp/Cv	אוטווטום		1.1366
Density	lb/ft3		44.1847
Z-Factor	15/10		0.006809
Flowrate (T-P)	gal/min		29.156
Flowrate (STP)	gal/min		28.9558
Specific Gravity	GPA STP		0.71332
Viscosity	cP		0.516953
Thermal Conductivity	Btu/hr/ft/R		0.065894
Surface Tension	dyne/cm		21.0904
Reid Vapor Pressure (ASTM-A True Vapor Pressure at 100 F	psia psia		12.26 19.89
Critical Temperature (Cubic E	F	600.8938	15.05
Critical Pressure (Cubic EOS)	psia	434.0501	
Dew Point Temperature	F	310.8082	
Bubble Point Temperature	F	69.9786	
Water Dew Point Temperature of			
Stream Vapor Pressure	psia	14.7	
Latent Heat of Vaporization (N	Btu/lb	129.6966	
Latent Heat of Vaporization (P CO2 Freeze Up	Btu/lb	261.028 No	
Heating Value (gross)	Btu/SCF	6328.86	
Heating Value (gross)	Btu/SCF	5877.35	
Wobbe Number	Btu/SCF	2970.05	
Average Hydrogen Atoms		17.9484	
Average Carbon Atoms		8.1776	
Hydrogen to Carbon Ratio		2.1948	

DESIGN II for Windows

Simulation Result:

SOLUTION REACHED

Problem: Project: Task: By:

At: 26-Apr-12 11:52 AM

Details for Stream 1

Stream 1 (Strm 1)

Thermodynamic Methods	K-Value: Vapor Visc: Liquid 1 Visc: Liquid 2 Visc:	PENG-ROB NBS81 NBS81 STEAM	Enthalpy: Vapor ThC: Liquid 1 ThC: Liquid 2 ThC:	PENG-ROB NBS81 NBS81 STEAM	Density: Vapor Den: Liquid 1 Den: Liquid 2 Den:	STD STD STD STD
Component Name	Total	Vapor	Liquid 1	Liquid 2	Total	K-Value
40 - NETROCEN	Ibmol/hr	Ibmol/hr	lbmol/hr	lbmol/hr	mole %	447.005
46 : NITROGEN 49 : CARBON DIOXIDE	0.002494 0.001623	0.000984	0.001036	0.000474 0.001207	0.00083 0.00054	117.325 21.191
2 : METHANE	0.043602 0.069114	0.010016	0.023971	0.009616	0.01451	51.591
3 : ETHANE 4 : PROPANE	0.129063	0.005296 0.003559	0.05917 0.122515	0.004648	0.023 0.04295	11.0524 3.58666
5 : IS OBUTANE 6 : N-BUTANE	0.046186	0.000599	0.045259 0.135815	0.000328	0.01537 0.04592	1.63351
9 : 2,2-DIMETHYLPROP	0.137988 3	0	0	0.00077 0	0	1.27621 0.887809
7: IS OPENTANE 8: N-PENTANE	0.091772	0.000392	0.091165	0.000215 0.000228	0.03054	0.531056
54:2,2-DIMETHYLBUTA	3	0	0	0	0	0.263313
55 : 2,3-DIMETHYLBUTA 52 : 2-METHYLPENTANE	3	0	0	0	0	0.20289
53:3-METHYLPENTANE	Э	0	0	0	0	0.170455
10 : N-HEXANE 37 : METHYLCYCLOPENTA	0.182612	0.000234	0.18225	0.000128 0	0.06077	0.158368 0.129156
40 : BENZENE	0.007573	0.000009001	0.007559	0.000004934	0.00252	0.147035
38 : CYCLOHEXANE 79 : 2-METHYLHEXANE	0.023228 0	0.00002285	0.023193	0.00001253	0.00773 0	0.121641 0.06631
80: 3-METHY LHEXANE 11: N-HEPTANE	0.212962	0.000102	0 0.212803	0 0.00005612	0.07087	0.064389
39: METHYLCYCLOHEXAN	3	0	0	0	0	0.049502
41 : TOLUENE 12 : N-OCTANE	0.040447 0.189403	0.00001551 0.00003455	0.040423 0.189349	0.000008505	0.01346 0.06303	0.047388 0.022529
45 : ETHYL BENZENE	0.013612	0.000002328	0.013609	0.000001276	0.00453	0.021125
43 : M-XYLENE 42 : O-XYLENE	0.077438	0.00001141	0.07742	0.000006255 0	0.02577	0.018197
13: N-NONANE	0.156739	0.00001109	0.156722	80000000.0	0.05216	0.008738
14 : N-DECANE 15 : N-UNDECANE	1.46074 3	0.00003973	1.46068	0.30002178	0.48611 0	0.003358
16: N-DODECANE 17: N-TRIDECANE	Э	0	0	0	0	0.000324
18 : N-TETRADECANE	3	0	0	0	0	0.00004239
19: N-PENTADECANE 20: N-HEXADECANE	0	0	0	0	0	0.0000149
21: N-HEPTA DECANE	5	0	0	0	0	0.000001754
91 : N-OCTADECANE 92 : N-NONADECANE	3	0	0	0	0	0.000001013 5.249E-07
93: N-EICOSANE	3	0	0	0	0	1.063E-07
3200 : N-HENEICOSANE 3201 : N-DOCOSANE	3	0	0	0	0	7.42E-08 2.893E-08
3202 : N-TRIC OSANE 3203 : N-TETRACOSANE	0	0	0	0	0	1.022E-08 5.101E-09
3203 : N-PENTACOSANE	5	0	0	0	0	2.027E-09
3205 : N-HEXACOSANE 3206 : N-HEPTACOSANE	3	0	0	0	0	9.28E-10 3.411E-10
3207: N-OCTACOSANE	Э	0	0	0	0	8.414E-11
3208: N-NONACOSANE 3209: N-TRIACONTANE	3	0	0	0	0	3.763E-11 7.213E-12
62 : WATER	297.491	0.000839	0.008217	297.482	99	12.6127
Total	300.496	0.024048	2.96932	297.503	100	
Flowrates						
Flowrates Component Name	Total ib/hr	Vapor ıb/hr	Liquid 1 Ib/hr	Liquid 2 ıb/hr	Total mass %	
Component Name	ib/hr	Vapor ib/hr	ib/hr	ib/hr	mass %	
Component Name 46 : NiTROGEN 49 : CARBON DIOXIDE	ib/hr 0.069869 0.071412	Vapor ib/hr 0.02/5/6 0.002683	0.029021 0.015632	0.013272 0.053097	mass % 0 001227 0 001254	
Component Name	ib/hr 0.069869	Vapor ib/hr 0.02/5/6	ib/hr 0.029021	ib/hr 0.013272	mass % 0 001227	
Component Name 46 : NiTROGEN 49 : CARBON DIOXIDE 2 : METHANE 3 : ETHANE 4 : PROPANE	ub/hr 0.069869 0.071412 0.699506 2.07812 5.69091	Vapor ib/hr 0.02/5/6 0.002683 0.160681 0.159254 0.156923	0.029021 0.015632 0.384558 1.77913 5.40216	0.013272 0.053097 0.154266 0.139741 0.131828	mass % 0 001227 0 001254 0.01228 0 036481 0 099902	
Component Name 46 : NiTROGEN 49 : CARBON DIOXIDE 2 : METHANE 3 : ETHANE 4 : PROPANE 5 : SOBUTANE 6 : N-BUTANE	0.069869 0.071412 0.699506 2.07812 5.69091 2.66435 8.01986	Vapor ib/hr 0.02/5/6 0.002683 0.160681 0.159254 0.156923 0.0348 0.081587	0.029021 0.015632 0.384558 1.77913 5.40216 2.63047 7.89354	0.013272 0.053097 0.154266 0.139741 0.131828 0.019078 0.044727	mass % 0 001227 0 001254 0.01228 0 036481 0 099902 0 047120 0 140787	
Component Name 46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP	0.069869 0.071412 0.699506 2.07812 5.69091 2.60405 8.01986	Vapor ib/hr 0.002/5/6 0.002683 0.180681 0.159254 0.03448 0.081587 0	0.029021 0.015632 0.384558 1.77913 5.40216 2.63047 7.89354 0	0.013272 0.053097 0.154266 0.139741 0.131828 0.019078 0.044727 0	mass % 0 001227 0 001254 0.01228 0 036481 0 099902 0 047120 0 140787	
Component Name 46 : NITROGEN 49 : CARBON DIOXIDE 2 : METHANE 3 : ETHANE 4 : PROPANE 5 : N-BUTANE 6 : N-BUTANE 7 : 2,2-DIMETHYLPROP 7 : ISOPENTANE 8 : N-PENTANE 8 : N-PENTANE	1b/hr 0.069869 0.071412 0.699506 2.07812 5.69091 2.60405 8.01986 0 9.662095 8.5461	Vapor ib/hr 0.002883 0.160881 0.1509254 0.156923 0.0348 0.031587 0 0.028288	tb/hr 0.029021 0.015632 0.384558 1.77913 5.40216 2.63047 7.89354 0 6.57715 8.49969	nb/hr 0.0132/2 0.053097 0.154266 0.139741 0.131828 0.019078 0.044727 0 0.015508 0.016435	mass % 0 001227 0 001254 0.01228 0 036481 0 099902 0 047122 0 140787 0 0 116229 0 150025	
Component Name 46: NiTROGEN 49: CARBON DIOXIDE 2: METHANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: Q.Z-DIMETHYLPROP 7: ISOPENTANE	1b/hr 0.069869 0.071412 0.699506 2.07812 5.69991 2.60405 8.01986 0 6.62095	Vapor Ib/hr 0.02/5/6 0.002683 0.160681 0.159254 0.156923 0.0348 0.081587 0.028288	1b/hr 0.029021 0.015632 0.384558 1.77913 5.40216 2.63047 7.88354 0 6.57715	nb/hr 0.0132/2 0.053097 0.154266 0.139741 0.131828 0.019078 0.044727 0 0.015508	mass % 0 001227 0 001254 0.01228 0 036481 0 099902 0 047120 0 140787 0 0 116229	
A6: NITROGEN A9: CARBON DIOXIDE 2: METNANE 3: ETHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 6: N-BUTANE 6: N-POPATANE 6: N-POPATANE 6: N-POPATANE 6: N-POPATANE 6: N-POPATANE 6: N-POPATANE 6: N-2-DAMETHYLBUTA 5: 2,3-DAMETHYLBUTA 5: 2,3-DAMETHYLBUTA	1b/hr 0.069869 0.071412 0.699506 2.07812 5.69091 2.66425 8.01986 0.9 6.62095 8.5461 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9	Vapor tb/hr 0.022/5/6 0.002883 0.180881 0.159254 0.158923 0.0344 0.081587 0.028288 0.02978 0.0340 0.0308187 0.0308187	0.029021 0.015832 0.384558 1.77913 5.40216 2.63047 7.89354 0 6.57715 8.4999 0 0	16/hr 0.0132/2 0.053097 0.154266 0.139741 0.131828 0.019078 0.044727 0 0.015508 0.016435 0 0	mass % 0.001227 0.001254 0.01228 0.036481 0.099902 0.047123 0.140787 0.0116229 0.150025 0.000	
Component Name 46 : NITROGEN 49 : CARBON DIDXIDE 2 : METHANE 3 : ETHANE 4 : PROPANE 5 : ISOBUTANE 8 : NEBUTANE 10 : NEBUTANE 10 : NEBUTANE 10 : NEPNTANE 10 : NEPNTANE 15 : 2-2-DMETHYLEBITA 15 : 2-3-DMETHYLEBITA 15 : 2-4-METHYLEBITA 16 : N-HEZANE	1b/hr 0.069869 0.071412 0.699506 2.07812 5.69091 2.60435 8.01986 9.3 6.62995 8.5461 3 3 3 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3	Vapor it/hr U/2/5/6 0.002883 0.180881 0.159254 0.158923 0.0948 0.081887 0.028288 0.02978 0.02978 0.00000000000000000000000000000000000	0.029021 0.015832 0.384558 1.77913 5.40216 2.63047 7.88354 0 6.57715 8.49969 0 0 0	10/hr 0.0132/2 0.053097 0.154266 0.139741 0.131828 0.019078 0.044727 0.015508 0.016435 0 0 0 0 0 0.011043	mass % 0.001224 0.001254 0.01258 0.036481 0.099902 0.047123 0.140787 0.0116229 0.150025 0.00000000000000000000000000000000	
Component Name 46 : NITROGEN 49 : CARBON DIOXIDE 2 : METHANE 4 : PROPANE 5 : ISGBUTANE 6 : N-BUTANE 5 : N-BUTANE 5 : N-PENTANE 54 : 2,2-DIMETHYLBUTA 52 : 2,2-DIMETHYLBUTA 52 : 2,4-METHYLBUTA 52 : 3-METHYLBUTA 53 : 3-METHYLBUTA 54 : 2,5 DIMETHYLBUTA 54 : 3,5 DIMETHYLBUTA 55 : 3,5 DIMETHYLBUTA 56 : 3,5 DIMETHYLBUTA 57 : 3,5 DIMETHYLBUTA 58 : 3,5 DIMETHYLBUTA 59 : 3,5 DIMETHYLBUTA 50 : 3,5 DIMET	b/hr U.089889 0.077412 0.699506 2.07812 5.69091 2.6415 8.01986 0 6.62095 8.5461 0 0 15.736	Vapor tc/hr UUZ/5/6 0.002883 0.160881 0.159254 0.158923 0.0048 0.081587 0.028288 0.028288 0.029978 0 0 0 0.020143	bbhr 0.029021 0.015832 0.384558 1.77913 5.40216 2.63047 7.83354 0 6.577715 8.48969 0 0 0 15.7048	0.0132/2 0.053097 0.154266 0.139741 0.131828 0.019978 0.044727 0.015508 0.016435 0.00000000000000000000000000000000000	mass % U01122/ 0 001254 C.01228 0 036481 0 099902 0 047123 0 140787 0 0 116229 0 150025 0 0 0 0 0 2776242	
Component Name 46 : NITROGEN 49 : CARBON DIOXIDE 2 : METHANE 4 : PROPANE 5 : ISOBUTANE 6 : N-BUTANE 5 : N-BUTANE 5 : N-PENTANE 5 : 2-2-DIMETHYLPBYA 52 : 2-2-DIMETHYLBUTA 52 : 2-METHYLBUTA 52 : 2-METHYLBUTA 53 : 3-METHYLPBYANE 10 : N-HEXANE 37 : METHYLPBYANE 40 : SENZENE 40 : SENZENE	1b/hr U.089889 0.0771412 0.699506 2.07812 5.69091 2.66435 8.01986 3 6.62295 8.5461 5 0 1 1.57736 3 0.591473	Vapor to hr 10 U22/5/6 0.002883 0.160881 0.159254 0.158923 0.0048 0.081587 0.028288 0.029978 0.000703 0.000703 0.000703 0.000703 0.001923	bbhr 0.029021 0.015932 0.384558 1.77913 5.40216 2.63047 7.89394 0 6.577715 8.49969 0 0 0 15.7048 0 0.599385	nb/hr 0.013272 0.053097 0.154266 0.139741 0.131828 0.019078 0.044727 0 0.015508 0.016435 0 0 0 0.011043 0 0 0.001043 0 0.000385 0.001054	mess % 0 001224 0 001254 0 01254 0 01264 0 019802 0 047120 0 116229 0 150025 0 0 0 0 0 276242 0 0 101383 0 034316	
GOMPONENT NAME 46 : NITROGEN 49 : CARBON DIOXIDE 2 : METHANE 4 : PROPANE 5 : NEUTANE 5 : 2.2-DIMETHYLPROP 7 : ISOPENTANE 5 : 2.2-DIMETHYLEUTA 52 : 2-METHYLEUTA 52 : 2-METHYLEUTA 12 : NETHYLPENTANE 10 : N-HEXANE 17 : METHYLPENTANE 10 : N-HEXANE 17 : METHYLPENTANE 18 : CYCLOHEXANE 79 : 2-METHYLHEXANE 79 : 2-METHYLHEXANE 10 : 3-METHYLHEXANE	16/hr 0.069489 0.07/1412 0.689506 2.07812 5.68091 2.66435 8.01986 9 6.62095 8.5461 0 0 0 1.5736 0 0 0.581473	Vapor to hir vapor to hir vapor to hir vapor to hir vapor to his vapor v	0.0290/21 0.015632 0.334558 1 777913 5.40216 2.630447 7.89354 0 6.57715 8.49969 0 0 0 0 0.599085 1.96183 0 0	0.013272 0.053397 0.154266 0.139741 0.131828 0.019978 0.044727 0.015508 0.016435 0 0 0 0.000385 0.001040	mass % U001227 0 001254 0 01258 0 038481 0 099902 0 0477120 0 140787 0 0 116229 0 150025 0 0 0 0 0 0 2776242 0 0 010383 0 034316	
COMPONENT Name 46: NITROGEN 49: CARBON DIDXIDE 2: METHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2-Z-DIMETHYLPROP 7: ISOPENTANE 41: 2-Z-DIMETHYLBUTA 42: 2-Z-DIMETHYLBUTA 43: 2-Z-DIMETHYLBUTA 43: 2-Z-DIMETHYLBUTA 44: 2-Z-DIMETHYLBUTA 45: 2-Z-DIMETHYLBUTA 46: 2-Z-DIMETHYLBUTA 47: METHYLCYCLOPENTA 48: EMETHYLBUTA 48: EMETHYLBUTA 49: EMETHYLBUTA 49: EMETHYLBUTA 49: EMETHYLBUTA 40: E	10-hr 0.068489 0.071412 0.689506 2.07812 5.68901 2.66435 8.01986 0.056415 0.056415 0.0564173 0.0591473 1.99481 0.0591473	Vapor tb/hr U.UZ/5+6 0.002883 0.160881 0.159254 0.158923 0.09484 0.081987 0.029978 0.0 0.000703 0.001025	0.029021 0.015832 0.384558 1 777913 5.40216 2.63047 7.89354 0 6.57715 8.4989 0 0 0 15.7048 0 0 0.593385 1.96183 0 0 21.3225	0.013272 0.053397 0.154266 0.139741 0.131828 0.019978 0.044727 0.015508 0.015436 0.01043 0.000385 0.001043 0.000385 0.001064	mess % 0 0011227 0 001254 0 001254 0 01258 0 036481 0 099902 0 047123 0 140787 0 116229 0 150025 0 0 0 0 0 276242 0 010383 0 034316 0 0 0 374889	
COMPONENT NAME 46: NITROGEN 49: CARBON DIDXIDE 2: METHANE 4: PROPANE 5: I-SCHANE 4: PROPANE 5: I-SCHANE 5: I-SCHANE 5: I-SCHANE 5: I-SCHANE 6: I-SCHANE 7: METHYLEPHTANE 7: METHYLEPHTANE 7: METHYLEYCLOPENTA 80: I-SCHANE 70: I-SCHANE 70: I-SCHANE 71: I-SCHANE 72: I-SCHANE 73: METHYLIEXANE 73: METHYLIEXANE 73: METHYLIEXANE 73: METHYLIEXANE 73: METHYLIEXANE 74: I-SCHANE 75: METHYLIEXANE 76: METHYLIEXANE 77: METHYLIEXANE 77: METHYLIEXANE 78: METHYLIEXANE	1bhr 0.068489 0.071412 0.689506 2.07812 5.689510 5.662095 8.01986 0.0562095 8.5461 0.0562095 8.0562095 8.5461 0.0562095 8.5461 0.0562095 8.5461 0.0562095 8.5461 0.0562095 8.5461 0.0562095 8.5461 0.0562095 8.5461 0.0562095 8.5461 0.0562095 8.5461 0.0562095 8.5461 0.0562095 8.5461 0.0562095 8.5461 0.0562095 8.5461 0.0562095 8.5461 0.05620000000000000000000000000000000000	Vapor tb/hr UUZ/546 0.002883 0.160881 0.159254 0.158923 0.00484 0.081587 0.022888 0.029878 0.0000000000000000000000000000000000	0.09021 0.015632 0.384558 1.77913 5.40216 2.83344 0.657715 8.45969 0.0 0.590385 1.96183 0.0 0.590385 1.96183 0.3722431	0.013272 0.053097 0.154266 0.139741 0.131828 0.019978 0.044727 0.015508 0.016435 0.016435 0.000058 0.001054 0.000085 0.000085	mass % 0 001227 0 001225 0 001254 0 01256 0 036481 0 099802 0 147722 0 140787 0 0 116229 0 150025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
COMPONENT NAME 46 : NITROGEN 49 : CARBON DIOXIDE 2 : METHANE 4 : PROPANE 5 : N-BUTANE 5 : N-BUTANE 5 : N-BUTANE 5 : N-PENTANE 5 : N-PENTANE 5 : 2-2-DIMETHYLPROP 7 : ISOPENTANE 5 : 2-2-DIMETHYLBUTA 52 : 2-METHYLBUTA 52 : 2-METHYLBUTA 52 : 3-METHYLPENTANE 10 : N-HEXANE 17 : METHYLPENTANE 10 : N-HEXANE 17 : METHYLHEXANE 18 : CYCLOHEXANE 79 : 2-METHYLHEXANE 11 : N-HEFTANE 21 : M-HEFTANE	1bhr U.089889 0.07/14/12 0.689506 2.078/14/12 0.689506 2.078/12 5.6809/1 2.664/15 8.01986 0.0 6.62095 8.54661 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vapor to hir vapor v	bhr 0.029021 0.015632 0.384558 1 77913 5.40216 2.650447 7.89384 0 6.57715 8.49969 0 0 0 0.590385 1 96183 0 0 0.590385 1 96183 0 0 0.2132225 0 0	b/br 0.0132/2 0.053097 0.154266 0.139741 0.131828 0.119978 0.044727 0.015508 0.016435 0 0 0 0.011043 0.000385 0.001643 0.000385 0.001643 0 0 0.000385 0.000385 0.000085 0.000085 0.000085 0.0005623 0 0 0.005623 0 0 0 0.005623	mass % U001227 0001254 0.01228 0.038481 0.099902 0.447722 0.140787 0 0.1162229 0.50025 0 0 0 0.0276242 0.0010383 0.034316 0.00374889	
A0: NITROGEN 40: NATROGEN 40: CARBON DIOXIDE 2: METHANE 41: PROPANE 51: SCBUTANE 51: NEUTANE 51: A0: SUTANE 51: A0: A0: A0: A0: A0: A0: A0: A0: A0: A0	1bhr 0.069489 0.07/14/12 0.689506 0.07/14/12 0.689506 2.078/12 5.6809/1 2.664/15 8.01986 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vapor tichnr UUZ/576 0.00268 0.00268 0.00268 0.00268 0.0044 0.001587 0.00273 0.001425 0.00142	0.029021 0.015632 0.384558 1 777913 5.40216 2.630447 7.89354 0 6.57715 8.49969 0 0 0 0 0 0.5990385 1.96183 0 0 0.372431 21.5225 0 0 3.72431 21.5225 21.44472 8.21893	b/br 0.0132/2 0.053397 0.154266 0.139741 0.131828 0.019978 0.044727 0.015508 0.016435 0 0 0.011043 0 0.000385 0.001054 0.0005623 0.000784 0.000784 0.000136 0.000136	mass % U001227 0001254 C01228 0036481 0099902 0140787 0 0116229 0150025 0 0 0 0776242 0 010383 0034316 0 0 0374889 0 0055348 0379785 0025388	
COMPONENT NAME 46 : NITROGEN 49 : CARBON DIOXIDE 2 : METHANE 4 : PROPANE 5 : NEUTANE 5 : 2.3-DIMETHYLPROP 7 : ISOPENTANE 5 : 2.2-DIMETHYLPROP 5 : 2.2-DIMETHYLPROP 5 : 2.3-DIMETHYLPROP 5 : 2.3-DIMETHYLPROP 5 : 2.3-DIMETHYLPROP 5 : 3.3-METHYLPONTANE 10 : NHEXANE 17 : NETHYLPENTANE 10 : NHEXANE 11 : NHEYANE 11 : NHEPTANE 12 : NHOTOLOREAN 41 : TOLUENE 12 : NHOTOTANE 45 : ETHYL BENZENE 45 : MAYTERENE 45 : MAYTERENE 42 : O-YLENE 42 : O-YLENE 41 : NHORANE	16/hr 0.069489 0.07/1412 0.699506 0.07/1412 0.699506 2.07/812 5.69091 2.66435 8.01986 0.9 6.62095 8.54641 0.0 0.591473 0.591473 1.99481 0.0 0.591473 0.372653 21.5343 1.4451 8.22081 0.0 0.1018	Vapor tichnr UU2/5/6 0.002683 0.186983 0.186983 0.1869823 0.00340 0.0018697 0 0 0.0029978 0 0 0 0 0.00207143 0 0.000273 0.0010257 0 0.001429 0.000346	0.029021 0.015632 0.384558 1 777913 5.40216 2.63047 7.89354 0 6.57715 8.49969 0 0 0 15.7048 0 0 0.5990385 1 96183 0 0 3.72431 21.6282 1.44472 8.21883 0 0 20.0996	0.0132/2 0.053397 0.154266 0.139741 0.131828 0.019978 0.044727 0.015508 0.016435 0 0 0.011043 0 0.000385 0.001054 0.0005823 0.000784 0.000784 0.0001664 0.0001664 0.0001664 0.0001664 0.0001664 0.0001664 0.0001664	mass % U001227 0 001254 C01228 0 036481 0 099902 0 0477122 0 140787 0 0 1162229 0 150025 0 0 0 0 0 2776242 0 0 010383 0 034316 0 0 0 055418 0 377985 0 025388	
A6: NITROGEN 46: NITROGEN 49: CARBON DIDXIDE 2: METHANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 5: 2,2-DIMETHYLPROP 5: 2,2-DIMETHYLBUTA 52: 2,2-DIMETHYLBUTA 52: 2,2-DIMETHYLBUTA 63: 2,2-DIMETHYLBUTA 64: 2,2-DIMETHYLBUTA 64: 2,2-DIMETHYLBUTA 64: 2,2-DIMETHYLBUTA 64: 2,2-DIMETHYLBUTA 64: 2,2-DIMETHYLBUTA 65: 2,3-DIMETHYLBUTA 66: 2,3-DIMETHYLBUTA 67: 2,3-DIM	1bhr 0.068489 0.071412 0.689506 2.07812 5.68091 2.66435 8.01986 3 6.62095 8.5461 3 1 3 1 5.736 3 2 1.98481 3 1 5.736 3 3 3 7.72653 21.6343 1.4451 8.22081 3 2 2.13383 3 2 1.5736 8.2081 8.2081 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Vapor tb/hr U2/5+6 0.002883 0.180881 0.180881 0.189254 0.158923 0.00448 0.081887 0.028288 0.029978 0.00000000000000000000000000000000000	1bhr 0.029021 0.015632 0.384558 1.77913 5.40216 2.63047 7.89354 0 6.57715 8.48969 6 0 0 15.7048 0 0 0 20.25225 1.96183 0 0 21.2225 0 21.2225 1.44472 8.21893 0 20.0966 207.92	0.0132/2 0.053097 0.154266 0.139741 0.131828 0.019978 0.044727 0.015508 0.015508 0.016435 0.0 0.011043 0.000385 0.001644 0.000784 0.000784 0.000784 0.000784 0.000784 0.000166	mass % 0 001:227 0 001:254 0 001:254 0 001254 0 0036481 0 099902 0 1477:22 0 140787 0 0 116229 0 150025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
46: NITROGEN 49: CARBON DIDXIDE 2: METHANE 41: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2,2-DIMETHYLPROP 7: ISOPENTANE 9: 2,2-DIMETHYLBUTA 95: 2,2-DIMETHYLBUTA 95: 2,2-DIMETHYLBUTA 95: 2,2-DIMETHYLBUTA 95: 2,2-DIMETHYLBUTA 95: 2,2-DIMETHYLBUTA 96: N-BENTANE 97: METHYLUPENTANE 10: N-HEXANE 11: N-HEYANE 12: N-HEYTHUREXANE 13: N-HETHYLUEXANE 14: TOLULEN 15: N-HEYTHUREXANE 14: TOLULEN 15: ETHYL BENZENE 14: TOLULEN 15: ETHYL BENZENE 14: N-DOCTANE 15: N-HOPECANE 16: N-HOPECANE 16: N-HOPECANE 16: N-HOPECANE	1bhr 0.069869 0.071412 0.699506 2.07812 5.69091 2.66435 8.01986 3 9 6.62095 8.54661 3 1 5.766 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 7.2853 21.6948 8.22081 8.22081 8.22081 9 2 0.1018 8.22081 9 2 0.1018 8.22081 9 2 0.1018 9 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Vapor tb/hr U.U2/5/6 0.002883 0.180881 0.180981 0.159254 0.158923 0.00446 0.081587 0.028288 0.029878 0.0000000000000000000000000000000000	1bhr 0.029021 0.015632 0.384558 1.77913 5.40216 2.65047 7.89354 0 6.57715 8.45969 6 0 0 15.7048 0 0 0 20.25225 0 0 0 0 0 21.52225 0 0 0 0 0 21.52225 0 0 0 0 0 0 21.52225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0132/2 0.053097 0.154266 0.139741 0.131828 0.019978 0.044727 0.015508 0.016435 0.0 0.01054 0.000784 0.002163 0.000784 0.002163 0.000664 0.000664 0.000664 0.000784 0.00078	mass % 0 U01227 0 001254 0 001254 0 001258 0 036481 0 099902 0 147712 0 140787 0 0 116229 0 150025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
GOMPONENT NAME 46 : NITROGEN 49 : CARBON DIOXIDE 2 : METHANE 4 : PROPANE 5 : NEUTANE 5 : 2.3-DIMETHYLPROP 7 : ISOPENTANE 5 : 2.2-DIMETHYLPROP 5 : 2.2-DIMETHYLEUTA 5 : 2.2-DIMETHYLEUTA 5 : 2.3-DIETHYLEUTA 5 : 2.3-DIETHYLEUTA 6 : SEBAZENE 10 : NHEXANE 79 : 2-METHYLPENTANE 10 : NHEYANE 11 : NHEGYANE 11 : NHEGYANE 11 : NHEGYANE 12 : NOOTCANE 45 : ETHYL BENZENE 45 : MAYTHUE KANE 45 : CYCLOTEKANE 45 : CYCLOTEKANE 46 : OXYLENE 47 : OXYLENE 48 : OXYLENE 41 : NHOECANE 41 : NHOECANE 41 : NHOECANE	bhr 0.069869 0.071412 0.689506 2.07812 5.68091 2.66435 8.01996 9.0295 8.5461 9.0 9.0 1.5736 9.0 9.0 1.5736 9.0 9.1 1.72633 2.1.3883 9.3 3.726533 2.1.62434 8.22984 8.2207.829	Vapor ib/hr UU2/b/6 0.00283 0.189283 0.189283 0.189283 0.03481 0.03481 0.03481 0.029978 0 0 0 0.020143 0 0.000703 0.001227 0.001422 0.003652	0.029021 0.015632 0.384558 1.77913 5.40216 2.80347 7.88394 6.57715 8.48989 0 0 15.7048 0 0.5990385 1.96183 0 21.3225 1.44472 8.21883 0 20.0998 207.82	b/hr 0.0132/2 0.053097 0.154286 0.139741 0.131828 0.139741 0.131828 0.0194727 0.044727 0.015508 0.016435 0 0 0 0.011043 0 0 0.000385 0.001054 0.000386 0.000784 0.000784 0.000784 0.0003086	mass % U001227 0 001254 C01228 0 036481 0 099902 0 0477122 0 140787 0 0 1162229 0 150025 0 0 0 0 0 2776242 0 0 010383 0 034316 0 0 0 055418 0 0377856 0 025368 0 144314 0 0 156281	
COMPONENT Name 46 : NITROGEN 49 : CARBON DIDXIDE 2 : METHANE 4 : PROPANE 4 : PROPANE 5 : SOBUTANE 6 : NEUTANE 9 : 2, ADMETHYLEROP 9 : 2, ADMETHYLE BUTA 55 : 2, 3-DIMETHYLE BUTA 55 : 2, 3-DIMETHYLE BUTA 55 : 2, 3-DIMETHYLE BUTA 56 : 2, 3-DIMETHYLE BUTA 57 : METHYLOPENTANE 10 : N-HEXANE 37 : METHYLOPENTANE 30 : CYCLOHEXANE 30 : CYCLOHEXANE 31 : N-HETHYLOPENTA 40 : BEAVER 30 : AMETHYLOPENTA 40 : BEAVER 31 : N-HETHYLOPENTA 40 : BEAVER 31 : N-HETHYLOPENTA 40 : BEAVER 31 : N-HETHYLOPENTA 41 : N-HETHYLOPENTA 42 : CAMPETHYLHE XANE 41 : N-HOTANA 41 : TOLUCIEN 42 : CAMPETHYLHE XANE 43 : CAMPETHYLOPENTA 44 : CAMPETHYLOPENTA 45 : CHANGE BUTANE 46 : CHANGE BUTANE 47 : N-HOROGENE 48 : N-HOROGENE 49 : N-HETHYLOPECANE 41 : N-HOROGENE 41 : N-TETRADECANE 41 : N-TETRADECANE 41 : N-TETRADECANE 41 : N-TETRADECANE	1bhr 0.068489 0.071412 0.689506 0.071412 0.689506 2.07812 5.68931 2.66435 8.01986 9.5 6.62085 8.5461 9.0 9.0 9.15736 9.0 9.1473 1.99481 9.0 9.147383 9.3 3.72653 21.6343 1.4451 8.22581 2.0 1.018 2.07.829 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.	Vapor it/hr U.UZ/5/6 0.002883 0.180283 0.180283 0.189224 0.0589287 0.02288 0.029978 0.000703 0.000703 0.0010257 0.0010217 0.000721 0.001221 0.001221 0.005652 0.0006552	0.029021 0.015632 0.384558 1.77913 5.40216 2.63047 7.82304 6.57715 8.42969 0 0 0 15.7048 0 0.590385 1.95183 0 0 0.21.3225 0 0.372431 21.62432 1.44427 8.218283 0 0 0.0996 207.82 0 0 0 0 0	b/hr 0.0132/2 0.053097 0.154286 0.139741 0.131828 0.139741 0.131828 0.019707 0.044727 0.01568 0.016435 0 0 0 0.0116435 0 0 0 0.0116435 0 0 0.00008623 0 0.00008623 0.00078 0.0000864	mass % 0 001227 0 001254 0.01228 0.01228 0 036481 0 098902 0 0477123 0 140787 0 0 1228 0 150025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
COMPONENT Name 46 : NITROGEN 49 : CARBON DIDXIDE 2 : METHANE 41 : PROPANE 41 : PROPANE 51 : SCRUTTANE 51 : ADMETHYLPROP 71 : SOPENTANE 52 : ADMETHYLBUTA 55 : 2, ADMETHYLBUTA 55 : 2, ADMETHYLBUTA 56 : 2, ADMETHYLBUTA 57 : METHYLPENTANE 58 : 2, ADMETHYLPENTANE 58 : 2, ADMETHYLPENTANE 59 : ADMETHYLPENTANE 50 : ADMETHYLPENTANE 50 : ADMETHYLPENTANE 51 : ADMETHYLPENTANE 52 : ADMETHYLPENTANE 53 : ADMETHYLPENTANE 53 : ADMETHYLPENTANE 54 : BEAVER 56 : ADMETHYLPENTANE 57 : AMETHYLPENTANE 58 : ADMETHYLPENTANE 59 : AMETHYLPENTANE 59 : AMETHYLPENTANE 50 : AMETHYLPENTANE 51 : AMETHYLPENTANE 51 : CHANGE AND ADMETHYLPENTANE 52 : CHANGE AND ADMETHYLPENTANE 53 : CHANGE AND ADMETHYLPENTANE 54 : CHANGE AND ADMETHYLPENTANE 55 : CHANGE AND ADMETHYLPENTANE 55 : CHANGE AND ADMETHYLPENTANE 56 : CHANGE AND ADMETHYLPENTANE 57 : CHANGE AND ADMETHYLPENTANE 57 : CHANGE AND ADMETHYLPENTANE 58 : CHANGE AND ADMETHYLPENTANE 59 : CHANGE AND ADMETHYLPENTANE 59 : CHANGE AND ADMETHYLPENTANE 59 : CHANGE AND ADMETHYLPENTANE 50 : CHANGE AND ADMET	1bhr 0.068489 0.071412 0.689506 2.07812 5.689510 2.60435 8.01986 0.3 0.5045 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Vapor it/hr U.UZ/5/6 0.002883 0.169684 0.159254 0.158253 0.9948 0.028988 0.029978 0.0 0.0207143 0.000703 0.001227 0.003846 0.003846 0.003846 0.003846 0.003846 0.003846 0.003846 0.003846 0.003846 0.003846 0.003846 0.003846	bbhr 0.029021 0.015632 0.384558 1.77913 5.40216 2.63047 7.88364 6.57715 8.48969 0 0 0 0 15.7048 0 0.590385 1.96183 0 0 21.32256 0 23.72431 21.6292 20.0996 207.82 0 0 0 0 0	b/br 0.0132/2 0.053097 0.154286 0.139741 0.131828 0.139741 0.131828 0.019707 0.044727 0.01568 0.016435 0 0 0 0.0116435 0 0 0.000385 0.001644 0.002163 0.000786 0.000786 0.000789 0.000789 0.000789 0.000789 0.000789 0.000789	mass % 0 001227 0 001224 0 001254 0 001254 0 01258 0 036481 0 098902 0 140787 1 16229 0 150025 0 0 0 0 076242 0 0 010383 0 034316 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 41: PROPANE 5: STHANE 41: PROPANE 5: ISOBUTANE 6: N-BUTANE 51: 2-2-DIMETHYLPROP 7: ISOPENTANE 52: 2-2-DIMETHYLBUTA 52: 2-2-DIMETHYLBUTA 52: 2-2-DIMETHYLBUTA 52: 2-2-DIMETHYLBUTA 52: 2-METHYLBUTA 52: 2-METHYLBUTA 52: 2-METHYLBUTA 62: REMETHYLBUTA 63: 3-METHYLBUTA 64: REMETHYLBUTA 65: 3-METHYLBUTA 66: REMETHYLBUTA 67: REMETHYLBUTA 68: CYCLOHEXANE 68: CYCLOHEXANE 68: CYCLOHEXANE 68: CYCLOHEXANE 68: CHANGE 68: METHYLBUTA 68: METHYLBUTA 69: MET	1bhr 0.068486 0.071412 0.689506 2.07812 5.68991 2.60435 8.01986 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Vapor technic value valu	1bhr 0.029021 0.015632 0.384558 1 77913 5.40216 2.60047 7.89354 0 6.57715 8.45969 0 0 0 0 15.7048 0 0 21.32225 0 0 21.32225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	b/hr 0.0132/2 0.053097 0.154266 0.139741 0.131828 0.019978 0.044727 0.015508 0.016435 0.00078 0.000784 0.000784 0.002163 0.000784 0.000664 0.000664 0.000664 0.000784 0.00078	mass % 0 U01227 0 001254 0 001254 0 001256 0 036481 0 099902 0 147722 0 140787 0 0 116229 0 150025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
46: NITROGEN 49: CARBON DIDXIDE 2: METHANE 41: PROPANE 5: STHANE 41: PROPANE 5: ISOBUTANE 6: N-BUTANE 51: 2-2-DIMETHYLPROP 7: ISOPENTANE 52: 2-2-DIMETHYLBUTA 52: 2-2-DIMETHYLBUTA 52: 2-2-DIMETHYLBUTA 52: 2-2-DIMETHYLBUTA 52: 2-ADIMETHYLBUTA 52: 2-ADIMETHYLBUTA 52: 2-ADIMETHYLBUTA 63: 3-ADIMETHYLBUTA 63: 3-ADIMETHYLBUTA 64: BENZENE 61: N-HEXANE 61: N-HEXANE 61: N-HEXANE 61: N-HEXANE 61: N-HEXANE 61: N-HEYTANE 61: N-HOLOCHANE 61: N-HOLOCHAN	1bhr 0.068486 0.071412 0.689506 2.07812 5.689510 2.07812 5.68931 2.66435 8.01986 0.07512 5.69031 2.66435 8.01986 0.07512 5.075	Vapor technic Vapor technic Vapor technic Vapor technic Vapor Vapo	1bhr 0.029021 0.015632 0.384558 1 77913 5.40216 2.60047 7.89354 0 6.57715 8.45969 0 0 0 0 15.7048 0 0 21.32225 0 0 0 0 0 21.32225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	b/hr 0.0132/2 0.053097 0.154266 0.139741 0.131828 0.019978 0.044727 0.015508 0.016435 0.00078 0.000784 0.002163 0.000784 0.002163 0.000784 0.000664 0.000664 0.000664 0.000664 0.000664 0.000664 0.00078	mass % 0 U011227 0 0011254 0 001254 0 001258 0 0036481 0 099902 0 1477125 0 140787 0 0 116229 0 150025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
A6: NITROGEN 46: NITROGEN 49: CARBON DIDXIDE 2: METHANE 4: PROPANE 5: STANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2-ADIMETHYLPROP 7: ISOPENTANE 9: 2-ADIMETHYLBUTA 55: 2-ADIMETHYLBUTA 55: 2-ADIMETHYLBUTA 56: 2-ADIMETHYLBUTA 57: METHYLDENTANE 80: 3-METHYLDENTANE 80:	1bhr 0.068489 0.071412 0.689506 0.071412 0.689506 2.07812 5.68931 2.66435 8.01896 0.3 0.581473 1.95481 0.3 0.591473 1.95481 0.3 0.591473 1.95481 0.3 0.591473 1.95481 0.3 0.591473 1.95481 0.3 0.591473 1.95481 0.3 0.591473 1.95481 0.3 0.591473 1.95481 0.3 0.591473 1.95481 0.3 0.591473 1.95481 0.3 0.591473 1.95481 0.3 0.591473 1.95481 0.3 0.591473 1.95481 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	Vapor ib/hr U.UZ/5+66 0.00/2883 0.160881 0.159254 0.158923 0.09487 0.028988 0.029978 0.0 0.020143 0.000703 0.001023 0.0010257 0.001242 0.0003247 0.001221 0.001221 0.001221 0.001221 0.001221 0.001221 0.001221 0.001221	bhr 0.029021 0.015632 0.384558 1.77913 5.40216 2.83047 7.88384 6.57715 8.48989 0 0 0 0 1.57048 0 0 0.599385 1.99183 0 0 0.32225 0 0.372431 21.6282 1.444472 8.21893 0 0 0 0 0 0 0 0 0 0 0 0	b/hr 0.0132/2 0.053097 0.154286 0.139741 0.131828 0.139741 0.131828 0.19970 0.044727 0.015608 0.0198405 0 0 0 0.0118435 0 0 0 0.0118435 0.001954 0.000784	mass % 0 001227 0 001224 0 001254 0 01256 0 0136481 0 098902 0 147722 0 140787 0 0 116229 0 150025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
A6: NITROGEN 46: NITROGEN 46: NITROGEN 49: CARBON DIDXIDE 2: METHANE 4: PROPANE 5: STANE 4: PROPANE 5: ISOBUTANE 6: N-BUTANE 9: 2-Z-DIMENTYLEDITA 54: 2-Z-DIMENTYLEDITA 54: 2-Z-DIMENTYLEDITA 54: 2-Z-DIMENTYLEDITA 55: 3-METHYLEDITANE 65: N-BETANE 67: METHYLEDITANE 67: METHYLEDITANE 68: 2-Z-DIMENTYLEDITANE 69: 2-METHYLEDITANE 69: 2-METHYLEXANE	1bhr 0.068489 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071412 0.662095 8.5461 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vapor ib/hr ULZ/19/6 0.002883 0.160881 0.159254 0.158923 0.03487 0.028978 0.029978 0.00000000000000000000000000000000000	bhr 0.029021 0.015632 0.384558 1.77913 5.40216 2.83047 7.88354 0.657715 8.48989 0.0 0.590385 1.98183 0.0 0.590385 1.98183 0.0 0.372431 21.6282 1.44472 8.21893 0.20.0996 207.82 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	b/hr 0.0132/2 0.053097 0.154266 0.139741 0.131828 0.19978 0.044727 0.015508 0.016435 0.0 0.000064 0.0000684 0.000078 0.000068	mass % 0 001227 0 0012254 0 001254 0 001254 0 001254 0 01258 0 0136481 0 099902 0 140787 0 0 116229 0 150025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
46: NITROGEN 49: CARBON DIOXIDE 2: METHANE 41: PROPANE 5: STANE 5: STANE 5: ISOBUTANE 6: N-BUTANE 5: 2-2-DIMETHYLPROP 7: ISOPENTANE 5: 2-2-DIMETHYLBUTA 52: 2-2-DIMETHYLBUTA 52: 2-2-DIMETHYLBUTA 52: 2-2-DIMETHYLBUTA 52: 2-AMETHYLBUTA 52: 2-AMETHYLBUTA 62: 2-AMETHYLBUTA 63: 3-AMETHYLBUTA 63: 3-AMETHYLBUTA 64: BEAZENE 61: N-HEXANE 79: 2-AMETHYLBUTA 61: SHEXENE 61: N-HEXANE 79: 2-AMETHYLHEXANE 11: N-HEXANE 12: N-HEYTANE 12: N-HEYTANE 13: N-HEYTANE 14: N-TOLUENE 14: N-TOLUENE 15: N-HUNDECANE 16: N-HODECANE 17: N-TOLUENE 18: N-TOLUENE 18: N-TOLUENE 18: N-TOLUENE 19: N-HEYTANE 19: N-HEYTANE 19: N-HEYTANE 11: N-HEZANE 11: N-HEZANE 11: N-HEZANE 11: N-HEZANE 11: N-HEZANE 12: N-TOLUENE 13: N-TOLUENE 13: N-TOLUENE 14: N-HEZANE 15: N-HEZANE 15: N-HEZANE 15: N-HEZANE 15: N-HEZANE 16: N-DODECANE 17: N-TRIDECANE 19: N-HEZANE 19: N-HEZANE 20: N-HERDECANE 21: N-HEZANE 21: N-HEZANE 220: N-HERDECANE 21: N-HERDECANE	1bhr 0.088486 0.071412 0.689506 0.071412 0.689506 2.07812 5.68931 2.66435 8.01986 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Vapor tichnr UUZ/SF6 0.002683 0.168081 0.168082 0.158023 0.158023 0.00440 0.001587 0.0029978 0.0029978 0.002073 0.001429 0.001422 0.005652 0.000247 0.001221 0.000247 0.001221 0.0005652 0.005652 0.0006652 0.	1bhr 0.029021 0.015632 0.384558 1 77913 5.40216 2.60047 7.89354 0 6.57715 8.49969 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	b/hr 0.0132/2 0.053097 0.154266 0.139741 0.131828 0.131978 0.044727 0.015508 0.016435 0.00078	mass % 0 U011227 0 001254 0 001254 0 001258 0 036481 0 099902 0 147725 0 140787 0 0 116229 0 150025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
46 : NITROGEN 49 : CARBON DIOXIDE 2 : METHANE 4 : PROPANE 5 : SOBUTANE 5 : N-BUTANE 5 : N-BUTANE 5 : N-PENTANE 5 : 2, 2-DIMETHYLEUTA 6 : BENZENE 10 : N-HEXANE 11 : N-HEXANE 12 : N-HEXANE 13 : N-HEYTANE 14 : N-DUENE 15 : N-HEYTANE 16 : N-HEYTANE 17 : N-HEYTANE 18 : N-HEYTANE 18 : N-HEYTANE 19 : N-HEYTANE 19 : N-HEYTANE 11 : N-HEYTANE 11 : N-HEYTANE 12 : N-HOTCHAEN 14 : N-DUENE 15 : N-HUNDECANE 16 : N-HOLGENE 17 : N-TRIBECANE 18 : N-TETRADECANE 19 : N-HEYTANE 20 : N-HEROCANE 21 : N-HEROCANE 22 : N-HEROCANE 220 : N-HEROCANE	10-bhr 0.068486 0.071412 0.689506 0.071412 0.689506 2.07812 5.68991 2.66435 8.01986 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Vapor it/hr UU2/5/6 0.002683 0.180803 0.180803 0.180803 0.003403 0.003403 0.003403 0.0029978 0.003403 0.002703 0.002703 0.002703 0.001429 0.003946	bhr 0.029021 0.015632 0.0384558 1.77913 5.40216 2.60247 7.88544 6.57715 8.48969 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	b/hr 0.0132/2 0.053097 0.154286 0.139741 0.131822 0.139743 0.131823 0.13978 0.044727 0.015508 0.016435 0 0 0 0.011043 0 0 0.000385 0.001054 0.0005823 0 0 0.000784 0.000784 0.000398 0.00098	mass % 0 U011227 0 0011254 0 001254 0 001258 0 0036481 0 099902 0 140787 0 116229 0 150025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
46: NITROGEN 49: CARBON DIDXIDE 2: METHANE 41: PROPANE 5: STANE 41: PROPANE 5: ISOBUTANE 6: NEUTANE 9: 2-Z-DIMETHYLPROP 7: IS OPENTANE 61: SEPTIME STANE 63: SEPTIME STANE 64: 2-Z-DIMETHYLBUTA 64: 2-Z-DIMETHYLBUTA 65: 2-Z-DIMETHYLBUTA 65: 2-Z-DIMETHYLBUTA 65: 2-Z-DIMETHYLBUTA 66: REPAIR 66: REPAIR 67: REPHYLBE STANE 67: METHYLCYCLOPENTA 68: EBEAUER 68: SEPTIME 69: SAMETHYLHE XAIR 69: AMETHYLHE 69: AMETHYLHE 69: AMETHYLHE 69: AMETHYLHE 69: AMETHYLH	1bhr 0.068489 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071412 0.662095 8.5461 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Vapor ib/hr ULZ/19/6 0.002883 0.160881 0.159254 0.158923 0.03487 0.028978 0.029978 0.00000000000000000000000000000000000	bhr 0.029021 0.015632 0.384558 1.77913 5.40216 2.83047 7.89384 0.65715 8.48989 0.0 0.590385 1.98183 0.0 0.590385 1.98183 0.0 0.72431 21.6282 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	b/hr 0.0132/2 0.053097 0.154266 0.139741 0.131828 0.19978 0.044727 0.015508 0.016435 0.0 0.000064 0.000078 0.000078 0.000066 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078 0.00078 0.000660 0.000660 0.00078	mass % 0 001227 0 0012254 0 001254 0 001256 0 0036481 0 099902 0 140787 0 0116229 0 150025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
46: NITROGEN 49: CARBON DIDXIDE 2: METHANE 41: PROPANE 5: STANE 41: PROPANE 5: ISOBUTANE 6: N-BUTANE 51: 2-2-DIMETHYLPROP 7: ISOPENTANE 51: 2-2-DIMETHYLBUTA 52: 2-2-DIMETHYLBUTA 53: 2-2-DIMETHYLBUTA 53: 2-2-DIMETHYLBUTA 53: 2-2-DIMETHYLBUTA 53: 2-2-DIMETHYLBUTA 53: 2-2-DIMETHYLBUTA 53: 2-2-DIMETHYLBUTA 54: 2-2-DIMETHYLBUTA 54: 2-2-DIMETHYLBUTA 55: ETHYLBUTA 55: ETHYLBUTA 56: ET	1bhr 0.088489 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071412 0.68019 0.080	Vapor ib/hr ULZ/19/6 0.002883 0.160881 0.159254 0.158923 0.00484 0.081587 0.0028978 0.0028988 0.0029978 0.001029978 0.001029978 0.001029 0.0010257 0.001429 0.000247 0.001211 0.001429 0.001429 0.001429 0.001429 0.0015257 0.001429	1bhr 0.029021 0.015632 0.384558 1.77913 5.40216 2.833447 8.3354 0.593385 1.7915 8.45959 0.593385 1.95183 0.593385 1.95183 0.593385 1.95183 0.0000000000000000000000000000000000	b/hr 0.0132/2 0.053097 0.154266 0.139741 0.131828 0.199781 0.044727 0.015508 0.016435 0.0 0.011508 0.016435 0.000664 0.000784	mass % 0 U01227 0 001254 0 001254 0 001256 0 0036481 0 099902 0 140787 0 0 116229 0 150025 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
46 : NITROGEN 46 : NITROGEN 49 : CARBON DIDXIDE 2 : METHANE 3 : ETHANE 4 : PROPANE 5 : SOBUTANE 6 : NOBUTANE 7 : ROPENTANE 5 : ABUTANE 7 : APENTANE 5 : ABUTANE 5 : ABUTANE 6 : ABUTANE 7 : METHYLPENTANE 6 : BAUTANE 7 : METHYLPENTANE 6 : BAUTANE 6	1bhr 0.068489 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071812 0.64035 0.071812	Vapor in the control of the control	bhr 0.029021 0.015632 0.984558 1.77913 5.40216 2.60347 7.88394 6.57715 6.57715 6.48969 0 0 0 15.7048 0 0 0 15.7048 0 0 15.7048 0 0 0 0 0 0 0 0 0	b/hr 0.0132/2 0.053097 0.154286 0.139741 0.1318228 0.139741 0.131828 0.019797 0.044727 0.015508 0.016435 0 0 0 0.000085 0.001054 0.000085 0.001054 0.000085 0.0000864 0.000088 0.000088 0.000088 0.000088 0.000088 0.000088	mass % 0 001227 0 001254 0.01228 0.01228 0.01228 0.01228 0.01228 0.01228 0.01228 0.01228 0.01228 0.01228 0.01228 0.01228 0.01228 0.01228 0.01228 0.01228 0.01228 0.01288 0.025288 0.025388 0.025388 0.025388 0.025388 0.025388	
46 : NITROGEN 49 : CARBON DIDXIDE 2 : METHANE 3 : CARBON DIDXIDE 2 : METHANE 4 : PROPANE 5 : SOBUTANE 5 : SOBUTANE 5 : SOBUTANE 5 : ROPERT AND 5 : ADMETHYLEROP 7 : SOBUTANE 5 : 2.3-DIMETHYLE BITA 6 : 2.2-METHYLE BITA 6 : 2.4-METHYLE PINTANE 10 : NHETHYLOYLOPENTA 40 : BEAVER 30 : CYCLOHEXANE 10 : AMETHYLOYLOPENTA 40 : BEAVER 40 : SOBUTANE 41 : NHETHYLOYLOPENTA 40 : BEAVER 41 : NHETHYLOYLOPENTA 40 : BEAVER 41 : NHETHYLOYLOPENTA 41 : NHETHYLOYLOPENTA 42 : CAMPARE 41 : NHOTANE 41 : NHOTANE 41 : NHOCONANE 41 : NHOECONANE 42 : NHOECONANE 4	1bhr 0.068489 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071412 0.689506 0.071812 0.66435 0.0958	Vapor it/hr U.UZ/566 0.002883 0.1802883 0.180283 0.180283 0.0029978 0.0029978 0.0020703 0.0020703 0.0010257 0.001422 0.005652 0.00000000000000000000000000000000000	bbhr 0.029021 0.015632 0.384558 1.77913 5.40216 2.63047 7.82344 6.577715 6.577715 6.577715 6.577715 6.57780 0 0 0 15.7048 0 0.590385 1.96183 0 0 0.590385 1.96183 0 0 0 0.590385 1.96183 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	b/hr 0.0132/2 0.053097 0.154286 0.139741 0.131828 0.139741 0.131828 0.13977 0.044727 0.044727 0.015688 0.016435 0 0 0 0.0110435 0 0 0.000088 0.001054 0.000088 0.000784 0.000784 0.000788 0.000789	mass % 0 001227 0 001254 0.01228 0.01228 0.01228 0.01228 0.01228 0.01229 0.01229 0.01229 0.01229 0.01229 0.01229 0.01229 0.010	

Flowrates	* / ·				
Component Name	Total ft3/hr	Vapor ft3/hr	Liquid 1 ft3/hr	Liquid 2 ft3/hr	Total volume %
16 : NITROGEN 19 : CARBON DIOXIDE	0.096873 0.007124	0.093957 0.005819	0.002777 0.000952	0.000139 0.000353	0.099542
: METHANE	1.02306	0.95598	0.064265	0.002814	1.05124
: ETHANE I: PROPANE	0.665536	0.53554 0.339685	0.158636 0.328462	0.00136 0.000875	0 683871
S: ISOBUTANE S: N-BUTANE	0.178588 0.498333	0.057151	0.12134 0.36412	0.30009606	0 183508
: 2,2-DIMETHYLPROP	Э	0.133988 0	0	0.000225 0	0 512061 0
: IS OPENTANE : N-PENTANE	0.281901 0.355583	0.037425 0.039661	0.244413 0.315856	0.30006291 0.30006666	0.289667
4:2,2-DIMETHYLBUTA 5:2,3-DIMETHYLBUTA	3	0	0	0	0
2:2-METHYLPENTANE	C	0	0	0	0
3:3-METHYLPENTANE 0:N-HEXANE	0.510962	0.022312	0.488612	0.0000375	0 0 525038
7 : METHYLCYCLOPENTA 0 : BENZENE	0.021125	0.000859	0.020265	0.000001444	0 021707
8: CYCLOHEXANE 9: 2-METHYLHEXANE	0.064365 3	0.002181 0	0.062181	0.000003666 0	0 066138 0
0:3-METHYLHEXANE	Э	0	0	0	0
1 : N-HEPTANE 9 : METHYLCYCLOHEXAN	0.580314 0	0.03977	0.570527	0.30001642	0 596301 0
1 : TOLUENE 2 : N-OCTANE	0.109857 0.51095	0.001481 0.003298	0.108374 0.507647	0.000002489 0.000005543	0 112883
5 : ETHYL BENZENE	0.036708	0.000222	0.036485	3.735E-07	0 0 3 7 7 1 9
3 : M-XY LENE 2 : O-XY LENE	0.208655 0	0.001089 0	0.207564	0.000001831 0	0 214403
3: N-NONANE 4: N-DECANE	0.421232 3.91989	0.001059 0.003792	0.420172 3.91609	0.000001779	0 432837
5 : N-UNDECANE	Э	0	0	0	0
6: N-DODECANE 7: N-TRIDECANE	2	0	0	0	0
8 : N-TETRADECANE 9 : N-PENTADECANE	3	0	0	0	0
0: N-HEXADECANE	3	0	0	0	0
1 : N-OCTADECANE	3	0	0	0	0
2: N-NONADECANE 3: N-EICOSANE	2	0	0	0	0
200 : N-HENEICOSANE 1201 : N-DOCOSANE	2	0	0	0	0
202 : N-TRICOSANE 203 : N-TETRACOSANE	3	0	0	0	0
204 : N-PENTAC OSANE	Э	0	0	0	0
3205: N-HEXACOSANE 3206: N-HEPTACOSANE	3	0	0	0	0
207: N-OCTACOSANE 208: N-NONACOSANE	3	0	0	0	0
3209 : N-TRIACONTANE 32 : WATER	3 87.1589	0 0.080113	0.022029	0 97.0567	0 89.53
otal	97.3189	2.29538	7.96077	37.0628	100
oiai Flowrates	97.3189	2.29538	7.96077	37.0628	100
Component Name	Total	Vapor	Liquid 1	Liquid 2	Total
	SCF/hr	SCF/hr	S CF/hr	SCF/hr	std vol %
6 : NITROGEN 9 : CARBON DIOXIDE	0.374395	0.373555 0.023134	0.000577	0.000264 0.001036	0 364641
: METHANE : ETHANE	3.82959 2.09625	3.83078	0.020563	0.008249	3.72982 2.04164
: PROPANE	1.52541	1.35052	0.170722	0.004166	1.48566
S: ISOBUTANE S: N-BUTANE	0.750643	0.227222 0.532708	0.074927 0.216707	0.000543	0 294806
: 2,2-DIMETHYLPROP :: IS OPENTANE	0.318043	0 0.148795	0 0.16885	0.000398	0 0 309757
: N-PENTANE 4 : 2,2-DIMETHYLBUTA	0.374056	0.157685	0.215953	0.000418	0.36431
5:2,3-DIMETHYLBUTA	3	0	0	0	0
2:2-METHYLPENTANE 3:3-METHYLPENTANE	3	0	0	0	0
0: N-HEXANE	0.468211	0.088707	0.379238	0.000267 0	0 456013
0 : BENZENE	0.014125	0.003416	0.010703	0.000006987	
0 : BENZENE 8 : CYCLOHEXANE	0.048639 0	0.008671 0	0.010703 0.039946 0	0.30002157 0	0 047371 0
0: BENZENE 8: CYCLOHEXANE 9: 2-METHYLHEXANE 0: 3-METHYLHEXANE	0.048639 0 0	0.008671 0 0	0.010703 0.039946 0 0	0.30002157 0 0	0 047371 0 0
17: METHYLCYCLOPENTA 10: BENZENE 18: CYCLOHEXANE 19: 2-METHYLHEXANE 10: 3-METHYLHEXANE 11: N-HEPTANE 19: METHYLCYCLOHEXAN	0.048639 0 0 0.535786	0.008671 0 0 0.038845	0.010703 0.039946 0 0 0.49681 0	0.30002157 0 0 0.000131 0	0 047371 0 0 0 0 521827 0
0 : BENZENE 8 : CYCLOHEXANE 9 : 2-METHYLHEXANE 0 : 3-METHYLHEXANE 1 : N-HEPTANE 9 : METHYLCYCLOHEXAN 1 : TOLUENE 2 : N-OCTANE	0.048639 0 0 0.535786 0.0744 0.503713	0.008671 0 0 0.038845 0 0.005887 0.013111	0.010703 0.039946 0 0 0.49681 0 0.068498 0.490553	0.00002157 0 0 0.000131 0 0.0001441 0.00004907	0 047371 0 0 0 521827 0 0 072461 0 490588
0: BENZENE 8: CYCLOHEXANE 9: 2-METHYLHEXANE 0: 3-METHYLHEXANE 1: N-HEPTANE 9: METHYLCYCLOHEXAN 1: TOLUENE 1: N-OCTANE	0.048639 0 0 0.535786 0.0744	0.008671 0 0 0.038845 0 0.005887 0.013111 0.000884	0.010703 0.039946 0 0 0.49681 0 0.068498 0.490553 0.026575	0.30002157 0 0 0.000131 0 0.30001441 0.30004907 0.000002493	0 047371 0 0 0 521827 0 0 072461 0 490588 0 026746
0: BENZENE 8: CYCLOHEXANE 9: 2-METHYLHEXANE 0: 3-METHYLHEXANE 1: N-HEPTANE 9: METHYLCYCLOHEXAN 1: TOLUBNE 2: N-OCTANE 2: N-OCTANE 3: M-XYLENE 3: M-XYLENE 2: O-OYLENE	0.048639 0 0.535786 0.535786 0.0744 0.503713 0.027462 0.156036 0 0	0.008671 0 0 0.038845 0.005887 0.013111 0.000884 0.03433 0	0.010703 0.039945 0 0 0.49681 0 0.668498 0.490553 0.026575 0.151694	0.00002157 0 0.000131 0 0.00001441 0.00004907 0.000002493 0.00001226 0	0 0 0 521827 0 0 072461 0 490589 0 026746 0 151971 0
0: BENZENE 8: CYCLOHEXANE 9: 2-METHYLHEXANE 0: 3-METHYLHEXANE 1: N-HEPTANE 9: METHYLCYCLOHEXAN 1: TOLUENE 2: N-OCTANE 5: ETHYL BENZENE 3: M-XYLENE 2: O-XYLENE 3: N-NONANE 4: N-DECANE	0.048639 0 0.535786 0.0744 0.503713 0.027462 0.156036 0.450705 4.55485	0.008671 0 0.038845 0.005887 0.013111 0.000884 0.03433 0 0.004209 0.015075	0.010703 0.039946 0 0 0.49681 0 0.068498 0.490553 0.028575 0.151694 0 0.446479 4.53971	0.00002157 0 0.000131 0 0.00001441 0.00004907 0.00002493 0.00001226 0 0.00001732 0.0006788	0 047371 0 0 0 521827 0 0 072461 0 490588 0 026746 0 151971 0 0 438963 4.43618
0: BENZENE 8: CYCLOHEXANE 9: 2-METHYLHEXANE 1: N-HEPTANE 9: METHYLCYCLOHEXAN 1: TOLUENE 2: N-OCTANE 5: ETHYL BENZENE 3: M-SYLENE 2: O-XYLENE 3: N-NONANE 4: N-OECANE 5: N-UDDECANE 6: N-DODECANE	0.048639 0 0.535786 0 0.07744 0.503714 0.503714 0.027462 0.156036 0 0.450705 4.55485 0 0	0.008671 0 0.038845 0.0055887 0.013111 0.000884 0.03433 0.004209 0.015075 0	0.019703 0.039946 0 0 0.49681 0 0.068498 0.490553 0.028575 0.151694 0 0.446479 4.53971 0 0	0.00002157 0 0.000131 0 0.0001441 0.0000490 0.00001226 0 0.00001732 0.00006768 0	0 047371 0 0 0 521827 0 0 072461 0 490588 0 026746 0 151971 0 0 438963 4.43618 0 0
0: BENZENE 8: CYCLOHEXANE 9: 2-METHYLHEXANE 1: N-HEFTANE 9: METHYLHEXANE 1: N-HEFTANE 9: METHYLCYCLOHEXAN 1: TOLUENE 2: N-OCTANE 5: ETHYL BENZENE 3: M-XYLENE 3: N-AVYLENE 4: N-DECANE 5: N-HODECANE 6: N-DODECANE 7: N-TRIDECANE	0.048639 0.0535786 0.07744 0.503713 0.027462 0.156036 0.450705 4.55485 0.00000000000000000000000000000000000	0.008671 0 0.038845 0.005887 0.013111 0.000884 0.03433 0.004209 0.004209 0.0505075 0.00	0.019703 0.039946 0 0 0.48681 0 0.068498 0.490553 0.028575 0.151694 0.448479 4.53971 0	0.00002157 0 0.000131 0.0001441 0.00004493 0.000002493 0.00001226 0.00001732 0.0000768 0.0000768	0 047371 0 0 0 521827 0 0 072461 0 490588 0 026746 0 151971 0 0 438963 4.43618 0 0
0: BENZENE 8: CYCLOHEXANE 9: 2-METHYLHEXANE 1: N-HEFTANE 9: METHYLCYCLOHEXAN 1: TOLUENE 2: N-OCTANE 5: ETHYL BENZENE 3: M-XYLENE 4: N-DECANE 4: N-DECANE 5: N-HODECANE 6: N-DODECANE 7: N-TITEACONE 8: N-TERADECANE 8: N-TERADECANE 8: N-TERADECANE 9: N-PENTADECANE	0.048639 0.535786 0.535786 0.07744 0.503713 0.027462 0.156036 0.450705 4.55485 0.00000000000000000000000000000000000	0.008871 0 0.0038845 0.005887 0.005887 0.013111 0.000884 0.004209 0.004209 0.004209 0.004209 0.004209	0.019703 0.039946 0 0.49681 0.068498 0.490553 0.028575 0.151894 0 0.448479 4.53971 0 0 0	0.30002157 0 0.000131 0.00001441 0.30004907 0.000002493 0.30001226 0.30001732 0.300007732 0.30006768 0 0 0	0 047371 0 0 521827 0 0772461 0 490588 0 026746 0 151971 0 0 438963 4.43618 0 0
10: BENZENE 18: CYCLOHEXANE 19: 2-METHYLHEXANE 11: N-HEFTANE 11: N-HEFTANE 11: TOLUENE 12: N-OCTANE 15: TOLUENE 12: N-OCTANE 15: ETHYL BENZENE 13: M-XYLENE 13: M-XYLENE 14: N-DECANE 15: N-UNDECANE 16: N-DODECANE 17: N-TRIDECANE 18: N-TETRADECANE 19: N-PENTADECANE	0.048639 0.053786 0.0774 0.00744 0.503713 0.027482 0.156036 0.0450705 4.55485 0 0 0 0 0 0 0 0 0 0 0 0 0	0.008871 0 0.005887 0.005887 0.013111 0.000884 0.03433 0 0.004209 0.004209 0.004209 0.004209	0.019703 0.039946 0 0 0.49681 0.0684 98 0.490553 0.028575 0.151894 0 0.448479 4.53971 0 0 0 0	0.39002157 0 0 0.000131 0 0.30001441 0.30001490 0.30001226 0.30001732 0.30006768 0 0 0 0	0 047371 0 0 0 521827 0 0 072461 0 490588 0 026746 0 151971 0 438963 4.43618 0 0 0
10: BENZENE 18: CYCLOHEXANE 19: 2-METHYLHEXANE 19: 2-METHYLHEXANE 11: N-HEPTANE 19: METHYLCYCLOHEXAN 11: TOLUENE 2: N-OCTANE 19: TOLUENE 2: N-OCTANE 2: N-OCTANE 2: N-OCTANE 2: N-OCTANE 2: N-OCTANE 3: N-N-DECANE 3: N-DECANE 3: N-TETRADECANE 19: N-PENTADECANE 19: N-PENTADECANE 19: N-PENTADECANE 19: N-PENTADECANE 19: N-HEXADECANE	0.048639 0.0535786 0.07744 0.503713 0.027462 0.158036 0.450705 4.55485 0.00000000000000000000000000000000000	0.008671 0 0.003845 0.005887 0.0131111 0.000884 0.03433 0 0.004209 0.015075 0 0	0.019703 0.039946 0 0.45981 0.068498 0.489553 0.028575 0.151894 0.446479 4.53971 0 0 0	0.00002157 0 0.0000131 0.00001441 0.00004897 0.000002489 0.00001226 0 0.00001732 0.00001732 0.00001732	0 047371 0 0 0 521827 0 0 072461 0 490588 0 026746 0 151971 0 0 438963 4.43618 0 0
10: BENZENE 18: CYCLOHEXANE 19: 2-METHYLHEXANE 19: 2-METHYLHEXANE 11: N-HEPTANE 11: N-HEPTANE 19: METHYLCYCLOHEXAN 11: TOLUENE 22: N-OCTANE 15: ETHYL BENXENE 23: N-AVTLENE 24: O-XYLENE 25: N-MOTORNE 26: N-MOTORNE 26: N-MOTORNE 27: N-TRIDECANE 28: N-HEDECANE 29: N-HENTADECANE 29: N-HENTADECANE 21: N-HETTADECANE 21: N-HOCTADECANE 21: N-HECOSANE	0.048639 3 0.535786 3 0.07744 0.503712 0.156036 0.156036 0.450705 4.55485 3 3 3 3 3 3 3 3 3 3 3 3 3	0.008671 0 0.038845 0 0.005887 0.013111 0.000884 0.03433 0 0.004209 0.015075 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.019703 0.039946 0 0 0.48981 0 0.068498 0.499553 0.428575 0.151894 0.448479 4.52971 0 0 0 0 0	0.30002157 0 0.0000131 0.30001441 0.300014907 0.00001226 0.30001732 0.30001732 0.30006768 0 0 0 0 0 0	0 047371 0 0 0521827 0 072481 0 072481 0 0490588 0 026746 0 151971 0 0 439962 4.43618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10: BENZENE 18: CYCLOHEXANE 19: 2-METHYLHEXANE 19: 2-METHYLHEXANE 11: N-HEPTANE 11: N-HEPTANE 19: METHYLCYCLOHEXAN 11: TOLUENE 22: N-OCTANE 15: ETHYL BENXENE 13: M-XYLENE 13: M-XYLENE 14: N-DECANE 14: N-DECANE 15: N-HONECANE 16: N-HONECANE 19: N-PENTA DECANE 19: N-PENTA DECANE 19: N-PENTA DECANE 19: N-HEXADECANE 19: N-HEXADECANE 19: N-HEXADECANE 11: N-HETTA DECANE 13: N-HETTA DECANE 14: N-HEXADECANE 15: N-HEXADECANE 16: N-HEXADECANE 16: N-HEXADECANE 17: N-HEXADECANE 18: N-HETTA DECANE 19: N-HECANE 19: N-HECANE 19: N-HECANE 19: N-HECANE 19: N-HECANE 19: N-HECOGANE 19: N-HECOGANE 19: N-HECOGANE 19: N-HECOGANE 19: N-HECOGANE	0.048639 3 0.535786 0.07744 0.503712 0.156036 0.156036 0.450705 4.55485 0.027462 0.156036 0.55485 0.027462 0.156036 0.027462 0.0274	0.008671 0 0.038845 0 0.005887 0.013111 0.000884 0.03433 0 0.004209 0.015075 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 19703 0 039944 0 0 0 0 446881 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.30002157 0 0.0000131 0.30001441 0.300014907 0.30001226 0.30001732 0.30001732 0.30006768 0 0 0 0 0 0 0 0	0 047371 0 0 521827 0 0 722481 0 0 722481 0 0 26746 0 151971 0 0 439583 4.43918 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0: BENZENE 8: CYCLOHEXANE 9: 2-METHYLHEXANE 1: N-HEFTANE 9: METHYLCYCLOHEXAN 1: TOLUENE 2: N-OCTANE 5: ETHYL BENZENE 3: M-XYLENE 3: N-AYLENE 3: N-AYLENE 3: N-NODANE 6: N-DODECANE 6: N-DODECANE 8: N-TERADECANE 9: N-PENTADECANE 9: N-PENTADECANE 1: N-HEFTADECANE 1: N-HOPADECANE 1: N-HOPADECAN	0.048839 0.535786 0.0744 0.503713 0.027462 0.156036 0.450705 4.55485 0.00000000000000000000000000000000000	0.008671 0 0.038845 0.005587 0.013311 0.000884 0.03433 0.004209 0.015075 0 0 0 0 0	0.019703 0.039946 0 0 0.48681 0.068498 0.499553 0.028575 0.151894 4.53971 0 0 0 0 0 0	0.30002157 0 0.000131 0.30001441 0.30001490 0.30001226 0.30001722 0.30006788 0 0 0 0 0 0 0 0	0 047371 0 0 0 521827 0 0 072481 0 490588 0 026746 0 151971 0 0 438963 4.43618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10: BENZENE 18: CYCLOHEXANE 19: 2-METHYLHEXANE 19: 2-METHYLHEXANE 11: N-HEFTANE 19: METHYLCYCLOHEXAN 11: TOLUENE 21: N-OCTANE 15: ETHYL BENZENE 13: M-XYLENE 13: M-XYLENE 13: M-XYLENE 14: N-DECANE 15: N-UNDECANE 16: N-DODECANE 17: N-TRIDECANE 18: N-TETRADECANE 19: N-PENTA DECANE 19: N-HEFTA DECANE 19: N-HEFTA DECANE 19: N-HOPCOSANE 100: N-HERIECOSANE	0.048639 0.0535786 0.07744 0.503713 0.027462 0.156036 0.450705 4.55485 0.027462 0.050705 0.05070	0.008671 0 0.0038845 0.005587 0.013311 0.000684 0.03433 0.004209 0.015075 0 0 0 0 0 0 0 0	0 019703 0 039946 0 0 0 0.48681 0 049055 0 049055 0 028575 0 151694 0 151697 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.30002157 0 0.000131 0.30001441 0.30001490 0.00001226 0.30001722 0.300007732 0.30000768 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 04/37/1 0 0 0 521826 0 0 0 0 7 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
10: BENZENE 18: CYCLOHEXANE 19: 2-METHYLHEXANE 11: N-HEFTANE 11: N-HEFTANE 11: N-HEFTANE 11: TOLUENE 12: N-OCTANE 15: TOLUENE 12: N-OCTANE 15: TOLUENE 12: N-OCTANE 15: TOLUENE 12: N-OCTANE 14: N-DECANE 15: TOLUENE 12: N-WYLENE 13: N-MYCHENE 16: N-HODECANE 16: N-HODECANE 17: N-TRIDECANE 18: N-TETRADECANE 19: N-PENTA DECANE 19: N-PENTA DECANE 19: N-PENTA DECANE 19: N-HEXADECANE 19: N-HEXADECANE 19: N-HERADECANE 19: N-HERADECANE 10: N-HERADECANE	0.048839 0.0535786 0.07744 0.503713 0.027462 0.158036 0.027462 0.158036 0.050705 4.55485 0.05070	0.008671 0 0.038845 0.005587 0.013311 0.000884 0.03433 0.004209 0.015075 0 0 0 0 0 0 0 0 0 0 0	0 019703 0 039946 0 0 0 0.48681 0 049055 0 049055 0 028575 0 151694 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.30002157 0 0.000131 0.30001441 0.30001490 0.00001226 0.30001732 0.30001732 0.30001732 0.30001732 0.30001732 0.30001732 0.30001732 0.30001732 0.30001732	0 047371 0 0 521827 0 0 07246 0 43968 0 15197 0 0 43896 4.43618 0 0 0 0 0 0 0 0 0 0 0 0
0: BENZENE 8: CYCLOHEXANE 9: 2-METHYLHEXANE 1: N-MEPTANE 9: METHYLHEXANE 1: N-MEPTANE 1: TOLUENE 9: METHYLOFOLOHEXAN 1: TOLUENE 9: FITHYL BENZENE 9: FITHYL BENZENE 9: FITHYL BENZENE 9: N-METANE 9: N-MEDANE 1: N	0.048839 0.0535786 0.07744 0.503713 0.027462 0.158036 0.050705 4.55485 0.05070	0.008671 0 0 0.038845 0.005587 0.013311 0.000884 0.03433 0.004209 0.015075 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 19703 0 0 39946 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.30002157 0 0.000131 0.30001441 0.30001490 0.00001226 0.30001732 0.300001732 0.300000000000000000000000000000000000	0 047371 0 0 521827 0 0 072481 0 490589 0 151971 0 0 438963 4.43618 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0: BENZENE 8: CYCLOHEXANE 9: 2-METHYLHEXANE 1: N-HEPTANE 1: N-HEPTANE 9: METHYLCYCLOHEXAN 1: TOLUENE 2: N-OCTANE 5: ETHYL BENZENE 2: O-XYLENE 3: N-XYLENE 3: N-NONANE 4: N-DECANE 6: N-DODECANE 8: N-HERECANE 8: N-HERECANE 8: N-HERECANE 1: N-HERECANE 1: N-HERECANE 1: N-HERECANE 1: N-HERECANE 2: N-NONADECANE 2: N-NONADECANE 2: N-NONADECANE 2: N-HERECANE 20: N-HERECOSANE 20: N-HERECOSANE 20: N-HERECOSANE 20: N-HERECOSANE 20: N-HERECOSANE	0.048639 0.0535786 0.07744 0.503712 0.156036 0.156036 0.55485 0.027462 0.156036 0.55485 0.02705 0.55485 0.02705 0.027462 0.027462 0.156036 0.027462 0	0.008671 0 0.038845 0 0.005887 0.013111 0.000884 0.03433 0 0.004209 0.015075 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 017703 0 039944 0 0 0 0 44681 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.30002157 0 0.000131 0.30001441 0.300014907 0.30001226 0.30001732 0.300001732 0.300001732 0.300000000000000000000000	0.047371 0.0521827 0.072481 0.490589 0.026746 0.151971 0.0438963 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000

102.675

Total

9.12596

7.60122

100

35.9478

Properties

Temperature	F	130			
Pressure	psia	64.696			
Enthalpy	Btu/hr	-5272526			
Entropy	Btu/hr/R	-8351.197			
Vapor Fraction		8.00289E-05			
		Total	Vapor	Liquid 1	Liquic 2
Flowrate	lbmol/hr	300.4963	0.024048	2.9693	297.503
Flowrate	lb/hr	5696.4657	0.743827	335.8644	5359.8574
Mole Fraction	10/11	1	0.00008003	0.009881	0 990039
Mass Fraction		1	0.0001306	0.05896	0 940909
Molecular Weight		18.9569	30.9304	113.1115	18.0161
Enthalpy	Btu/lbmol	-17546.0536	1202 4185	-12222 8127	-17600.7044
Enthalpy	Btu/lb	-925.5785	38.875	-108.0599	-976.9405
Entropy	Btu/lbmol/R	-27.7913	2.8271	-11.3991	-27.9574
Entropy	Btu/lb/R	-1.466	0.091402	-0.100777	-1.5518
Ср	Btu/lbmot/R		14.2245	60.6783	17.9901
Ср	Btu/lb/R		0.4599	0.5364	0.9986
Cv	Blu/lbmot/R		12.0359	53.1882	17.226
Cv	Btu/lb/R		0.3891	0.4702	0.9561
Cp/Cv			1.1818	1.1408	1.0444
Density	lb/ft3		0.324054	42.1899	61.5631
Z-Factor			0.975972	0.027414	0 002992
Flowrate (T-P)	ft3/s		0.0006376		
Flowrate (T-P)	gal/min			0.992575	10.8553
Flowrate (STP)	MMSCFD		0.000219		
Flowrate (STP)	gal/min			0.947685	10.7156
Specific Gravity	GPA STP			0.999923	0
Viscosity	dΡ		0.011249	0.496634	0 508842
Thermal Conductivity	Btu/hr/ft/R		0.016295	0.068388	0.37486
Surface Tension	dyno/cm			17.3133	67.197
Reid Vapor Pressure (ASTM-A	psia			15.16	
True Vapor Pressure at 100 F	psia			62.52	
Critical Temperature (Cubic E	F	695.2822			
Critical Pressure (Cubic EOS)	psia F	3260.7231			
Dew Point Temperature	F	294.9285			
Bubble Point Temperature Water Dow Point	F	105.1859 296.777			
Liquid 2 Freezing Point	F	31.9383			
Stream Vapor Pressure	DSIA	75.9603			
Latent Heat of Vaporization (N	Btu/lb	875.145			
Latent Heat of Vaporization (P	Btu/lb	1037.296			
Vapor Sonic Velocity	fVs	1031.64			
CO2 Freeze Up	10.5	No			
Heating Value (gross)	Btu/SCF	61.07			
Heating Value (net)	Btu/SCF	53.7			
Wobbe Number	Btu/SCF	74.87			
Average Hydrogen Atoms		2.1537			
Average Carbon Atoms		0.0788			
Hydrogen to Carbon Ratio		27.3362			

Details for Stream 2

Stream 2 (Flash Gas)

Thermodynamic Methods	K-Value:	PENG-ROB	Enthalpy:	PENG-ROB	Density:	STD
Flowrates	Vapor Visc:	NBS81	Vapor ThC:	NBS81	Vapor Den:	STD
Component Name	Total Ibmol/hr	Vapor Ibmol/hr	Inciplent Liquid 1 mol fra	Liquid 2 Ibmol/hr	Total mole %	K-Value
46 : NITROGEN	0.002354	0.002354	0.00002993	0	1.50162	501.715
49 : CARBON DIOXIDE	0.000629 0.038288	0.000629 0.038288	0.00006463	0	0.401017	62.0516 192.569
2 : METHANE 3 : ETHANE	0.041731	0.038288	0.001269 0.008893	0	24.428 26.6246	29.9394
4 : PROPANE 5 : ISOBUTANE	0.037698 0.006535	0.037698 0.006535	0.031262 0.013894	0	24.0514 4.16923	7.69346 3.00065
6 : N-BUTANE	0.014979	0.014979	0.043133	0	9.5564	2.21555
9: 2,2-DIMETHYLPROP 7: ISOPENTANE	0.003735	0.003735	0.030909	0	0 2.38302	1.48838 0.77099
8 : N-PENTANE	0.003782	0.003782	0.040267	0	2.41298	0.599252
54: 2,2-DIMETHYLBUTA 55: 2,3-DIMETHYLBUTA	3	0	0	0	0	0.360909 0.263381
52: 2-METHY LPENTANE 53: 3-METHY LPENTANE	0	0	0	0	0	0.236664
10: N-HEXANE	0.00176	0.00176	0.063527	0	1.12308	0.210746 0.176786
37 : METHYLCYCLOPENTA 40 : BENZENE	0.00006924	0.00006934	0 0.002636	0	0 0 044238	0.154099 0.167844
38 : CYCLOHEXANE	0.000171	0.000171	0.0081	0	0 109238	0.13487
79: 2-METHYLHEXANE 80: 3-METHYLHEXANE	3	0	0	0	0	0.065693
11: N-HEPTANE 39: METHYLCYCLOHEXAN	0.000625	0.000625	0.074595	0	0 398698	0.053448 0.051298
41 : TOLUENE	0.00009534	0.00009534	0.014176	0	0 060829	0.04291
12 : N-OCTANE 45 : ETHYL BENZENE	0.000172 0.00001206	0.000172 0.00001206	0.06648 0.004778	0	0 109524 0 007696	0.016475
43 : M-XYLENE	0.00005739	0.00005739	0.027185	0	0 036613	0.013468
42 : O-XYLENE 13 : N-NONANE	0.00004499	0.00004499	0 0.05505	0	0 0 028706	0.007514 0.005215
14 : N-DE CANE 15 : N-UNDECANE	0.000131	0.000131	0.513145	0	0 083492	0.001627
16: N-DODECANE	3	0	0	0	0	0.000112
17 : N-TRIDECANE 18 : N-TETRADECANE	3 3	0	0	0	0	0.00003037
19: N-PENTADECANE	Э	0	0	0	0	0.000002656 8.709E-07
20: N-HEXADE CANE 21: N-HEPTADECANE	3	0	0	0	0	1.918E-07
91: N-OCTADE CANE 92: N-NONADE CANE	0	0	0	0	0	1.046E-07 4.872E 08
93: N-EICOSANE	Э	0	0	0	0	6.515E-09
3200 : N-HENEICOSANE 3201 : N-DOCOSANE	3	0	0	0	0	4.79E-09 1.46E-09
3202: N-TRICOSANE 3203: N-TETRACOSANE	3	0	0	0	0	3.805E-10 1.756E-10
3204: N-PENTACOSANE	3	0	0	0	0	6.254E-11
3205 : N-HEXACOSANE 3206 : N-HEPTACOSANE	3 3	0	0	0	0	2.573E 11 7.913E-12
3207 : N-OCTACOSANE	Э	0	0	0	0	9.576E-13
3208: N-NONACOSANE 3209: N-TRIA CONTANE	0	0	0	0	0	4.182E-13 3.437E-14
62 : WATER	0.003871	0.003871	0.000606	0	2.46959	40.7407
Total Flowrates	0.15674	0.15674	•	0	100	
Component Name	Total ib/hr	Vapor ib/hr	Incipient Liquid 1 mass fra	Liquid 2 Ib/hr	Total mass %	
46 : NITROGEN	0.065934	0.065934	0.000007	0	1.1404	
49 : CARBON DIOXIDE	0.027662	0.027662	0.000024	0	0 478445	
2 : METHANE 3 : ETHANE	0.614261 1.25478	0.614261 1.25478	0.000175	0	10.6244 21.7029	
4 : PROPANE 5 : ISOBUTANE	1.66226 0.379806	1.65226 0.379806	0.01185	0	28.7507 6.56918	
6 : N-BUTANE	0.870563	0.870563	0.02155	0	15.0574	
9: 2,2-DIMETHYLPRDP 7: ISOPENTANE	0.269476	0.269476	0 0.01917	0	0 4.66091	
8 : N-PENTANE	0.272864	0.2/2864	0.02497	0	4.7195	
54 : 2,2-DIMETHYLBUTA 55 : 2,3-DIMETHYLBUTA	3	0	0	0	0	
52: 2-METHYLPENTANE 53: 3-METHYLPENTANE	3	0	0	0	0	
10 : N-HEXANE	0.15169	0.15169	0.04706	0	2.62365	
37 : METHYLCYCLOPENTA 40 : BENZENE	0.005416	0 0.005416	0 0.00177	0	0 0 093674	
38: CYCLOHEXANE 79: 2-METHYLHEXANE	0.014409	0.014409	0.00586	0	0 249224 0	
80:3-METHYLHEXANE	3	0	0	0	0	
11: N-HEPTANE 39: METHYLCYCLOHEXAN	0.062616 0	0.062616	0.06425 0	0	1.08331	
41 : TOLUENE 12 : N-OCTANE	0.008784 0.019609	0.008784	0.01123 0.06528	0	0 151936 0 339154	
45 : ETHYL BENZENE	0.001281	0.001281	0.00436	0	0.02215	
43 : M-XYLENE 42 : O-XYLENE	0.006092 3	0.006092	0.02481	0	0 105374	
13 : N-NONANE	0.00577	0.00577	0.06069	0	0.099806	
14 : N-DECANE 15 : N-UNDECANE	0.018619 0	0.018619 0	0.6276 0	0	0 322039 0	
16: N-DODECANE 17: N-TRIDECANE	3	0	0	0	0	
18: N-TETRADECANE 19: N-PENTADECANE	3	0	0	0	0	
20 : N-HEXADE CANE	5	0	0	0	0	
21: N-HEPTADECANE 91: N-OCTADECANE	3	0	0	0	0	
92: N-NONADECANE	Э	0	0	0	0	
93: N-EICOSANE 3200: N-HENEICOSANE	3	0	0	0	0	
3201 : N-DOCOSANE 3202 : N-TRICOSANE	5	0	0	0	0	
3203: N-TETRACOSANE	3	0	0	0	0	
3204: N-PENTACOSANE 3205: N-HEXACOSANE	3	0	0	0	0	
3206: N-HEPTACOSANE	C	0	0	0	0	
3207: N-OCTACOSANE 3208: N-NONACOSANE	3	0	0	0	0	
3209: N-TRIA CONTANE 62: WATER	0.069737	0.069737	0.000094	0	0 1.20619	
Total	5.78163	5.79163		0	100	
TOTAL	Total VOC	3.818992		U	100	

Flowrates					
Component Name	Total ft3/hr	Vapor ft3/hr	Liquid 1 ft3/hr	Liquid 2 ft3/hr	Total volume %
46 : NITROGEN 49 : CARBON DIOXIDE 2 : METHANE 3 : ETHANE 4 : PROPANE 5 : INGOUTANE 5 : INGOUTANE 6 : N-BUTNANE 9 : 2.2-DIMENTANE 9 : 2.2-DIMENTANE 9 : 2.2-DIMENTANE 9 : 2.2-DIMENTY LEUTA 52 : 2-METHY LEUTA 52 : 2-METHY LEUTA 52 : 2-METHY LEUTA 62 : 2-METHY LEUTA 63 : 3-METHY LEUTA 63 : 3-METHY LEUTA 63 : 3-METHY LEUTA 64 : RENZENE 10 : N-HEXANE 11 : N-HEXANE 11 : N-HEXANE 11 : N-HEXANE 11 : N-HEYANE 12 : N-OCTANE 13 : N-TENZE 14 : N-OCTANE 15 : N-UNDECANE 15 : N-UNDECANE 16 : N-DODECANE 17 : N-TRUDECANE 17 : N-TRUDECANE 18 : N-TETRA DECANE 19 : N-HENZE 20 : N-HENZE 20 : N-HENZE 21 : N-HENZE 21 : N-HENZE 220 : N-HORACOSANE 220 : N-HORACOSANE	0.900416 0.240461 14.6477 15.9648 14.4219 2.49989 1.42893 1.42	0.900418 0.240461 14.5477 15.3646 14.42919 2.439399 1.42899 0 0 0.000000000000000000000000000000			1.50152 0.401017 24.428 26.6246 2.38912 2.41298 0 0 0 1.12398 0 0 0.044238 0.199239 0 0.0464238 0.199239 0 0.056698 0 0.066026766 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3209 : N-TRIACONTANE 62 : WATER	3 1.4809	0 1.4809	0	0	0 2.46969
Total	59.9628	59.9628	0	0	100
Flowrates Component Name	Total	Vapor	Liquid 1	Liquid 2	Total
46: MITCOGEN 2 : METHANE 3 : CARDON DIOXIDE 2 : METHANE 4 : ROPANE 5 : ROPANE 5 : ROPANE 5 : NEBUTANE 6 : NEBUTANE 7 : METHYLEBUTANE 7 : METHYLEBUTANE 7 : METHYLOYCLOPENTA 8 : REWZENE 8 : NEBUZENE 10 : NEBUZENE 11 : NEBUZENE 12 : NEBUZENE 13 : NEBUZENE 14 : NUBECANE 15 : NUBECANE 16 : NUBECANE 16 : NUBECANE 17 : NUBECANE 18 : NUBECANE 18 : NUBECANE 18 : NUBECANE 19 : NUBECANE 19 : NUBECANE 19 : NUBECANE 19 : NUBECANE 10 : NUBECANE 10 : NUBECANE 10 : NUBECANE 11 : NUBECANE 12 : NUBECANE 12 : NUBECANE 13 : NUBECANE 14 : NUBECANE 15 : NUBECANE 16 : NUBECANE 17 : NUBECANE 17 : NUBECANE 18 : NUBECANE 19 : NUBECANE 19 : NUBECOSANE 20 : NUBECOSANE 200 : NUBECOSANE 200 : NUBECOSANE 201 : NUBECOSANE 201 : NUBECOSANE 202 : NUBECOSANE 202 : NUBECOSANE 203 : NUBECOSANE 203 : NUBECOSANE 204 : NUBECOSANE 205 : NUBECOSANE 206 : NUBECOSANE 207 : NUBECOSANE	0.98317 0.288526 15.8384 14.3958 15.8384 14.3958 2.47987 5.60417 0 1.41743 1.43525 1.3525 0.086801 0.028313 0.086807 0.028313 0.086145 0.024778 0.021778 0.021778 0.021778 0.021778 0.021778 0.036181 0.086545 0.004578 0.004578 0.004578 0.004578 0.004578 0.004578 0.004578 0.004578 0.004578 0.004578 0.004578 0.0056145 0.004578 0.0056145 0.004578 0.0056145 0.	0.89317 0.228526 14.5298 15.3394 14.3058 2.47987 5.69417 0 1.41743 0 0 0 1.41743 0 0 0 0.88801 0.884975 0 0 0.227747 0 0.036181 0.065145 0.004578 0.021778 0.017074 0.049661 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1.50182 9-0401917 24.428 26.8246 24.0514 3.15054 3.15054 0.0 0.1318312 2.41238 0.0 0.0 0.1238312 2.41238 0.0 0.0 0.044238 0.0 0.058238 0.0 0.058238 0.0058260 0.0582600 0.0582600 0.0582600 0.0582600 0.05826000 0.0582600000000000000000000000000000000000
3209: N-TRIACONTANE 62: WATER	1.46898	0 1.45898	0	0	0 2.46959
Total Properties	59.4802	59.4802	0	0	100
Temperature Pressure Enthalpy Entropy Vapor Fraction	F psia Btu/hr Btu/hr/R	70 14.7 82.87522 0.7450388 1 Total	Vapor		
Flowrate Flowrate	lbmol/hr lb/hr	0.15674 5.7816	0.15674 5.7816		

Mole Fraction		1	1
Mass Fraction		1	1
Molecular Weight		36.8867	36.8867
Enthalpy	Btu/lbmol	528.743	528 743
Enthalpy	Btu/lb	14.3342	14.3342
Entropy	Btu/lbmol/R	4.7533	4.7533
Entropy	Btu/lb/R	0.128863	0.128863
Ср	Btu/lbmol/R		15.2957
Ср	Btu/lb/R		0.4147
Cv	Btu/lbmol/R		13.2292
Cv	Btu/lb/R		0.3586
Cp/Cv			1.1562
Density	lb/ft3		0.09642
Z-Factor			0.989496
Flowrate (T-P)	ft3/s		0.016656
Flowrate (STP)	MMSCFD		0.001428
Viscosity	cP		0.009183
Thermal Conductivity	Btu/hr/ft/R		0.012089
Critical Temperature (Cubic E	F	198.8514	
Critical Pressure (Cubic EOS)	psia	1207.4657	
Dew Point Temperature	F	69.9999	
Bubble Point Temperature	F	-273.6593	
Water Dew Point	F	69.49	
Stream Vapor Pressure	psia	927.8977	
Vapor Sonic Velocity	ft/s	897.78	
CO2 Freeze Up		No	
Heating Value (gross)	Btu/SCF	2064.72	
Heating Value (not)	Btu/SCF	1895.26	
Wobbe Number	Btu/SCF	1817.71	
Average Hydrogen Atoms		6.7861	
Average Carbon Atoms		2.4231	
Hydrogen to Carbon Ratio		2.8005	
Methane Number		40.89	
Motor Octane Number		98.52	

Details for Stream 3

Stream 3 (Produced Water)

		,				
Thermodynamic Methods	K-Value: Liquid 1 Visc: Liquid 2 Visc:	PENG-ROB NBS81 STEAM	Enthalpy: Liquid 1 ThC: Liquid 2 ThC:	PENG-ROB NBS81 STEAM	Density: Liquid 1 Den: Liquid 2 Den:	STD STD STD
Component Name	Total Ibmol/hr	Vapor Ibmol/hr	Liquid 1 Ibmol/hr	Liquid 2 Ibmol/hr	Total mole %	K-Value
46 : NITROGEN	0.00014	0	0.00008519	0.00006528	0.00004677	
49 : CARBON DIOXIDE	0.000994	0	0.000184	0.0000328	0.000331	
2 : METHANE	0.005314	0	0.003611	0.001703	0 001769	
3 : ETHANE 4 : PROPANE	0.027383	0	0.025312	0.00207	0 009117	
5 : ISOBUTANE	0.091365 0.039651	0	0.088984 0.039549	0.002381 0.000102	0 030421 0 013202	
6 : N-BUTANE	0.123009	0	0.122774	0.000235	0 040957	
9:2,2-DIMETHYLPROP	Э	0	0	0	0	
7 : ISOPENTANE 8 : N-PENTANE	0.088036 0.114674	0	0.087978 0.114614	0.00005858	0 029312 0 038181	
54:2,2-DIMETHYLBUTA	0	0	0	0	0	
55 : 2,3-DIMETHYLBUTA 52 : 2-METHYLPENTANE	3	0	0	0	0	
53 : 3-METHYLPENTANE	5	0	0	0	0	
10 : N-HEXANE	0.180851	0	0.180824	0.30002761	0 060216	
37 : METHYLCYCLOPENTA 40 : BENZENE	0.007503	0	0.007502	0 0.000001087	0 0 002498	
38 : CYCLOHEXANE	0.023057	0	0.023054	0.000002685	0 007677	
79: 2-METHY LHEXANE 80: 3-METHY LHEXANE	3	0	0	0	0	
11 : N-HEPTANE	0.212337	0	0.212327	0.000009801	0 070699	
39: METHYLCYCLOHEXAN	Э	0	0	0	0	
41 : TOLUENE 12 : N-OCTANE	0.040351 0.189231	0	0.04035 0.189228	0.000001495 0.000002692	0 013435	
45 : ETHYL BENZENE	0.0136	0	0.0136	1.892E-07	0 004528	
43 : M-XYLENE	0.07738	0	0.07738	0.0000009	0 025764 0	
42 : O-XYLENE 13 : N-NONANE	0.156694	0	0.156693	7.057E-07	0 052172	
14 : N-DECANE	1.46061	0	1.46061	0.000002052	0.48632	
15 : N-UNDECANE 16 : N-DODECANE	3	0	0	0	0	
17: N-TRIDECANE	Э	0	0	0	0	
18 : N-TETRADECANE	3	0	0	0	0	
19: N-PENTA DECANE 20: N-HEXADECANE	3 3	0	0	0	0	
21: N-HEPTA DECANE	Э	0	0	0	0	
91 : N-OCTADECANE 92 : N-NONADECANE	3	0	0	0	0	
93 : N-EICOSANE	Э	0	0	0	0	
3200: N-HENEICOSANE 3201: N-DOCOSANE	3	0	0	0	0	
3202 : N-TRICOSANE	5	0	0	0	0	
3203: N-TETRACOSANE	3	0	0	0	0	
3204: N-PENTACOSANE 3205: N-HEXACOSANE	3 3	0	0	0	0	
3206 : N-HEPTACOSANE	0	0	0	0	0	
3207: N-OCTACOSANE 3208: N-NONACOSANE	3 3	0	0	0	0	
3209 : N-TRIACONTANE	0	0	0	0	0	
62 : WATER	297.487	0	0.001725	297.486	99.0503	
Total	300.34	0	2.84638	297.493	100	
Flowrates						
Component Name	Total lb/hr	Vapor lb/hr	Liquid 1 lb/hr	Liquid 2 lb/hr	Total mass %	
46 : NITROGEN	0.003935	0	0.002387	0.001549	0.00006915	
49 : CARBON DIOXIDE 2 : METHANE	0.04375	0	0.008095 0.057927	0.035655 0.027319	0 000769	
3 : ETHANE	0.823345	0	0.761094	0.027319	0.014468	
4 : PROPANE	4.02865	0	3.92366	0.104994	0 070794	
5 : ISOBUTANE 6 : N-BUTANE	2.30454 7.14929	0	2.29858 7.13564	0.005957	0 040497 0 125632	
9:2,2-DIMETHYLPROP	Э	0	0	0	0	
7 : ISOPENTANE B : N-PENTANE	6.35147 8.27324	0	6.34725 8.26896	0.004226	0 111612 0 145382	
54: 2,2-DIMETHYLBUTA	Э	0	0	0	0	
55 : 2,3-DIMETHYLBUTA	3	0	0	0	0	
52:2-METHYLPENTANE 53:3-METHYLPENTANE	Э	0	0	0	0	
10 : N-HEXANE	15.5843	0	15.5819	0.002379	0 273857	
87 : METHYLCYCLOPENTA 10 : BENZENE	0.586057	0	0 0.585972	0 0.00008494	0 0 010299	
88 : CYCLOHEXANE	1.9404	0	1.94017	0.000226	0 034098	
79:2-METHYLHEXANE BO:3-METHYLHEXANE	3	0	0	0	0	
11 : N-HEPTANE	21.2757	0	21.2747	0.000982	0 373869	
9 : METHYLCYCLOHEXAN	3.71774	0	0	0	0	
41 : TOLUENE 12 : N-OCTANE	3.71774 21.6147	0	3.7176 21.6144	0.000138 0.000308	0.06533 0.379827	
45 : ETHYL BENZENE	1.44382	0	1.4438	0.00002008	0 025372	
43 : M-XYLENE 42 : O-XYLENE	8.21471	0	8.21462	0.30009555	0 144354 0	
13: N-NONANE	20.096	0	20.0959	0.0000905	0 353138	
14: N-DECANE 15: N-UN DECANE	207.81	0	207.81	0.000292	3.65176 0	
15 : N-UNDECANE 16 : N-DODECANE	3	0	0	0	0	
17 : N-TRIDECANE	0	0	0	0	0	
18 : N-TETRADECANE 19 : N-PENTADECANE	3	0	0	0	0	
20: N-HEXADECANE	5	0	0	0	Ō	
21: N-HEPTA DECANE 91: N-OCTA DECANE	3	0	0	0	0	
91: N-OCTADECANE 92: N-NONADECANE	0	0	0	0	0	
93 : N-EICOSANE	0	0	0	0	0	
3200 : N-HENEICOSANE 3201 : N-DOCOSANE	3	0	0	0	0	
3202 : N-TRICOSANE	Э	0	0	0	0	
3203: N-TETRACOSANE	3	0	0	0	0	
2204 - N. DENTACOCANIC						
	3	0	0	0	0	
3205 : N-HEXACOSANE 3206 : N-HEPTACOSANE	3 3	0	0	0	0	
3205 : N-HEXACOSANE 3206 : N-HEPTACOSANE 3207 : N-OCTACOSANE	3 3 3	0 0	0	0	0	
3204: N-PENTACOSANE 3205: N-HEXACOSANE 3206: N-HEPTACOSANE 3207: N-OCTACOSANE 3208: N-NONACOSANE 3209: N-TRIACONTANE)))))	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	
3205: N-HEXACOSANE 3206: N-HEPTACOSANE 3207: N-OCTACOSANE 3208: N-NONACOSANE 3209: N-TRIACONTANE	3 3 3 3	0 0 0	0 0 0	0 0 0	0 0 0	
3205 : N-HEXACOSANE 3206 : N-HEPTACOSANE 3207 : N-OCTACOSANE 3208 : N-NONACOSANE)))))	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	

Flowrates					
Component Name	Total ft3/hr	Vapor ft3/hr	Liquid 1 ft3/hr	Liquid 2 ft3/hr	Total volume %
46 : NITROGEN 49 : CARBON DIOXIDE	0.00024 0.000718	0	0.000224	0.00001598 0.000234	0 000257
2 : METHANE 3 : ETHANE	0.009996 0.067221	0	0.009503 0.066622	0.000492 0.000599	0 010689 0 071883
4 : PROPANE 5 : IS OBUTANE	0.234894	0	0.234205	0.000689	0 251184
6 : N-BUTANE	0.32321	0	0.323142	0.00006793	0 345624
9: 2,2-DIMETHYLPROP 7: IS OPENTANE	0.231574	0	0 0.231558	0 0.30001694	0 0 247634
8 : N-PENTANE 54 : 2,2-DIMETHYLBUTA	0.301682 3	0	0.301664	0.30001715 0	0 322603
55: 2,3-DIMETHYLBUTA 52: 2-METHYLPENTANE	3	0	0	0	0
53: 3-METHYLPENTANE 10: N-HEXANE	0.475936	0	0 0.475928	0.000007983	0 0 508941
37: METHYLCYCLOPENTA	Э	0	0	0	0
40 : BENZENE 38 : CYCLOHEXANE	0.019746 0.06068	0	0.019745 0.060679	3.145E-07 7.765E-07	0 021115 0 064888
79:2-METHYLHEXANE 80:3-METHYLHEXANE))	0	0	0	0
11: N-HEPTANE 39: METHYLCYCLOHEXAN	0.558847 3	0	0.558844	0.000002834	0 597602
41 : TOLUENE 12 : N-OCTANE	0.106201 0.49805	0	0.106201 0.498049	4.324E-07 7.785E-07	0 113566 0 532589
45 : ETHYL BENZENE	0.035796	0	0.035796	5.471E-08	0 0 3 8 2 7 8
43 : M-XYLENE 42 : O-XYLENE	0.203663	0	0.203663	2.603E-07 0	0 217787 0
13 : N-NONANE 14 : N-DECANE	0.412416 3.84432	0	0.412416 3.84432	0.000000204 5.935E 07	0 441017 4.11092
15 : N-UNDECANE 16 : N-DODECANE))	0	0	0	0
17 : N-TRIDECANE 18 : N-TETRADECANE	3	0	0	0	0
19: N-PENTADECANE	0	0	0	0	0
20 : N-HEXADECANE 21 : N-HEPTA DECANE	3	0	0	0	0
91 : N-OCTADECANE 92 : N-NONADECANE	3	0	0	0	0
93: N-EICOSANE 3200: N-HENEICOSANE	3	0	0	0	0
3201 : N-DOCOSANE 3202 : N-TRICOSANE	3	0	0	0	0
3203 : N-TETRACOSANE 3204 : N-PENTACOSANE	3	0	0	0	0
3205 : N-HEXACOSANE	Э	0	0	0	0
3206: N-HEPTACOSANE 3207: N-OCTACOSANE	3	0	0	0	0
3208: N-NONACOSANE 3209: N-TRIACONTANE 62: WATER	0 0 86.0256	0	0 0 0.004541	0 0 86.021	0 0 91.9913
Total	93.5149	U	7.49168	96.0232	100
Flowrates					
Component Name	Total SCF/hr	Vapor SCF/hr	Liquid 1 SCF/hr	Liquid 2 SCΓ/hr	Total std vol %
46 : NITROGEN 49 : CARBON DIOXIDE	0.0000782 0.000853	0	0.00004743	0.00003077	0.00008375
2 : METHANE 3 : ETHANE	0.004558	0	0.003097	0.001461 0.002801	0 004882
4 : PROPANE 5 : ISOBUTANE	0.127316 0.065643	0	0.123998 0.065473	0.003318 3.00017	0 136347 0 070299
6 : N-BUTANE	0.196275	0	0.1959	0.000375	0210198
9: 2,2-DIMETHYLPROP 7: ISOPENTANE	0.163056	0	0.162948	0.000108	0 174623
8 : N-PENTANE 54 : 2,2-DIMETHYLBUTA	0.2102 3	0	0.210091 0	0.000109 0	0 225111
55 : 2,3-DIMETHYLBUTA 52 : 2-METHYLPENTANE	3	0	0	0	0
53: 3-METHYLPENTANE 10: N-HEXANE	0.376328	0	0.376271	0 0.30005745	0 0 403024
37 : METHYLCYCLOPENTA 40 : BENZENE	0.010624	0	0.010623	0.00000154	0 0 011378
38 : CYCLOHEXANE	0.039712	0	0.039708	0.000004625	0 042529
79: 2-METHYLHEXANE 80: 3-METHYLHEXANE 11: N-HEPTANE	5	0	0	0	0
39: METHYLCYCLOHEXAN	0.495721 0	0	0.495698	0.00002288	0 530885 0
			0.495698 0 0.068374 0.49024	0.000002534 0.000006975	0 530885 0 0 073227 0 525023
39 : METHYLCYCLOHEXAN 41 : TOLUENE 12 : N-OCTANE 45 : ETHYL BENZENE	0.068377 0.490247 0.026559	0 0 0	0.495698 0 0.068374 0.49024 0.026559	0 0.000002534 0.000006975 3.695E-07	0 530885 0 0 073227 0 525023 0 028443
39: METHYLCYCLOHEXAN 41: TOLUENE 12: N-OCTANE 45: ETHYL BENZENE 43: M-XYLENE 42: O-XYLENE	0.068377 0.490247 0.026559 0.151616 0	0 0 0 0 0	0.495698 0 0.068374 0.49024 0.026559 0.151614 0	0 0.000002534 0.000006975 3.695E-07 0.000001763	0 530885 0 0 073227 0 525023 0 028443 0 162371 0
39: METHYLCYCLOHEXAN 41: TOLUENE 12: N-OCTANE 45: ETHYL BENZENE 43: M-XYLENE 42: O-XYLENE 14: N-NONANE 14: N-DECANE	0 0.068377 0.490247 0.026559 0.151616 0 0.4464 4.53949	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.495698 0 0.068374 0.49024 0.026559 0.151614 0 0.446398 4.53949	0 0.000002534 0.000006975 3.695E-07 0.000001763 0 0.00000201 0.000006379	0 530885 0 0 073227 0 525023 0 028443 0 162371 0 0 478066 4.86151
39 : METHYLCYCLOHEXAN 41 : TOLUENE 12 : N-OCTANE 45 : ETHYL BENZENE 42 : M-XYLENE 42 : O-XYLENE 13 : N-JONANE 14 : N-DECANE 15 : N-UNDECANE 15 : N-UNDECANE	0 0.088377 0.490247 0.026559 0.151616 0 0.4464 4.53949 0	0 0 0 0 0 0	0.495698 0.068374 0.49024 0.026559 0.151614 0 0.446398 4.53949 0	0 0.00002534 0.000006975 3.695E-07 0.000001763 0 0.30000201 0.000006379 0	0 530885 0 0 073227 0 525023 0 028443 0 162371 0 0 478066 4.86151 0
39: METHYLCYCLOHEXAN 41: TOLUENE 12: N-OCTANE 45: ETHYL BENZENE 43: M-XYLENE 13: N-NONANE 14: N-DECANE 15: N-UNDECANE	0 0.088377 0.490247 0.026559 0.151616 0 0.4464 4.53949 0	0 0 0 0 0	0.495698 0 0.068374 0.49024 0.026559 0.151614 0 0.446398 4.53949 0	0 0.000002534 0.000006975 3.695E-07 0.000001763 0 0.30000201 0.000006379	0 530885 0 0 073227 0 525023 0 028443 0 162371 0 0 478066 4.86151 0
39 : METHYLCYCLOHEXAN 41 : TOLUENE 12 : N-OCTANE 43 : ETHYL DENZENE 43 : MYYLENE 13 : N-NONANE 14 : N-DECANE 15 : N-NODECANE 16 : N-ODECANE 17 : N-TRIDECANE 18 : N-TETRADECANE 19 : N-TETRADECANE 19 : N-TETRADECANE	0.068377 0.490247 0.026559 0.151616 0 0.4464 4.53949 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.495698 0.068374 0.49024 0.026559 0.151614 0 0.448398 4.53949 0 0 0	0 0.00002534 0.000008975 3.695E-07 0.000001763 0 0.00000201 0.000006379 0 0 0	0 530885 0 0 073227 0 525023 0 028443 0 162371 0 478066 4.86151 0 0 0
39 : METHYLCYCLOHEXAN 41 : TOLUENE 12 : N-COTANE 43 : ETHYL BENZENE 43 : M-YYLENE 14 : O-AYYLENE 15 : N-HONANE 14 : N-DECANE 15 : N-HONEANE 16 : N-HODECANE 17 : N-TRIDECANE 18 : N-TETRADECANE 19 : N-PENTADECANE 20 : N-HEXADECANE 21 : N-HEXADECANE	0 0.068377 0.490247 0.026559 0.151616 0 0.4464 4.53949 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.495688 0 0.068374 0.49024 0.026559 0.151614 0 0.448398 4.53949 0 0 0 0	0 0.00002534 0.000008975 3.695E-07 0.000001763 0 0.00000201 0.00006379 0 0 0 0	0 530885 0 0 073227 0 525023 0 028443 0 182371 0 0 478066 4.86151 0 0 0 0 0 0
39 : METHYLCYCLOHEXAN 41 : TOLUGHE 12 : N.OCTANE 12 : N.OCTANE 43 : MAYLENE 42 : OAYLENE 13 : N.HONANE 11 : N.HOCANE 15 : N.HONDECANE 15 : N.HONDECANE 15 : N.HONDECANE 16 : N.HONDECANE 19 : N.HONDECANE	0 0.683777 0.490247 0.028559 0.151616 0 0 0.051616 0 0 0.151616 0 0 0.4464 4.53949 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.495688 0.068374 0.49024 0.028559 0.151814 0.448398 4.53949 0 0 0 0 0 0 0 0	0 0.000002544 0.000006975 3.696E-07 0.000001763 0 0.00000201 0.000008379 0 0 0 0 0	0 530885 0 0 073227 0 525023 0 028443 0 162371 0 0 478066 4.86151 0 0 0 0 0 0
39 : METHYLCYCLOHEXAN 41 : TOLUENE 12 : N-OCTANE 12 : N-OCTANE 43 : M-XYLENE 43 : M-XYLENE 43 : M-XYLENE 13 : N-MONANE 11 : N-DECANE 15 : N-MONANE 16 : N-MONECANE 16 : N-MONECANE 16 : N-MONECANE 17 : N-MONECANE 18 : N-MONECANE 19 : N-MONECANE 12 : N-MONECANE 13 : N-GENTANECANE 12 : N-MONECANE 13 : N-GENTANECANE 12 : N-MONECANE 13 : N-GENTANECANE 14 : N-MONECANE	0 0.069377 0.490247 0.026559 0.151616 0 0.4464 4.53949 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.49588 0 0.068374 0.49024 0.028559 0.151814 0 0.448398 4.53949 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.000002534 0.000005975 3.695E.07 0.00001763 0 0.000006379 0 0 0 0 0 0 0 0 0 0	0 530885 0 073227 0 525023 0 182371 0 478066 4.86151 0 0 0 0 0 0 0 0
39 : METNYLCYCLOHEXAN 41 : TOLUSHS 12 : N-COCTANE 43 : MSYLENE 43 : MSYLENE 43 : MSYLENE 13 : N-NONANE 15 : N-UNDECANE 15 : N-UNDECANE 15 : N-UNDECANE 15 : N-TETRADECANE 19 : N-FENTADECANE 19 : N-FENTADECANE 21 : N-HEFNADECANE 21 : N-HEFNADECANE 22 : N-HOSCANE 32 : N-HOSCANE 32 : N-HOSCANE 32 : N-HEFNADECANE 32 : N-HOSCANE 32 : N-HOSCANE 32 : N-HOSCANE 32 : N-HOSCANE 32 : N-HEFNADECANE 32 : N-HOSCANE 32 : N-HOSCANE	0 0.683.777 0.4902.47 0.0265559 0.151616 0 0.4464 4.53949 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.495688 0.068374 0.49024 0.22659 0.151814 0 0.446398 4.53949 0 0 0 0 0 0 0 0	0 0.000002534 0.000005975 3.895E-07 0.000001763 0.0000018379 0 0 0 0 0 0 0 0 0 0	0 530885 0 0 073227 0 525023 0 028443 0 162371 0 478086 4.86151 0 0 0 0 0 0 0 0 0 0
39 : METNYLCYCLOHEXAN 41 : TOLUSHS 12 : N-COCTANE 43 : MSYLENE 43 : MSYLENE 43 : MSYLENE 13 : N-NONANE 11 : N-GECANE 15 : N-UNDECANE 15 : N-UNDECANE 15 : N-UNDECANE 17 : N-TRIDECANE 19 : N-FENTADECANE 21 : N-HEFNADECANE 21 : N-HEFNADECANE 22 : N-HEFXADECANE 22 : N-HEFXADECANE 23 : N-HEFNADECANE 22 : N-HERNECANE 23 : N-HERNECANE 24 : N-HERNECANE 25 : N-HERNECANE 26 : N-HERNECANE 27 : N-GECANE 28 : N-GECANE 29 : N-GECANE 20 : N-GECOSANE 200 : N-GECOSANE 200 : N-TRECOSANE 200 : N-TRECOSANE 200 : N-TRECOSANE	0 0.68377 0.490247 0.490247 0.026559 0.151616 0 0 0.26559 0.151616 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.495688 0.068374 0.49024 0.028559 0.151814 0.446398 4.53949 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 0,000002534 0,000006975 3,695E-07 0,000001763 0,0000008379 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.530885 0 0.073227 0.525023 0.028443 0.162371 0.0478066 4.86151 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.
39 : METNYLCYCLOHEXAN 41 : TOLUSHS 12 : N.OCTANE 43 : MYYLENE 43 : MYYLENE 43 : MYYLENE 13 : N.NONANE 15 : N.HONDECANE 15 : N.HONDECANE 15 : N.HONDECANE 15 : N.TETRADECANE 19 : N.FERTADECANE 20 : N.HEXADECANE 21 : N.HEPTADECANE 22 : N.HEXADECANE 220 : N.HETRADECANE 220 : N.HERADECANE	0 0.68377 0.490247 0.490247 0.026559 0.151616 0 0 0.26559 0.151616 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.495688 0.068374 0.49024 0.026559 0.151614 0.446398 4.53949 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0,000002534 0,000006975 3,695E-07 0,000001763 0,0000008379 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.530885 0 0.073227 0.525023 0.028443 0.162371 0.0478066 4.86151 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0
39 : METNYLCYCLOHEXAN 41 : TOLUGHE 12 : N.OCTANE 43 : MYYLENE 42 : O-XYLENE 43 : MYYLENE 13 : N.AIONANE 14 : N.GECANE 15 : N.AIONANE 17 : N.TRIDECANE 19 : N.FENTADECANE 19 : N.FENTADECANE 21 : N.HEPTADECANE 21 : N.HEPTADECANE 22 : N.HEXADECANE 22 : N.HEXADECANE 22 : N.HEXADECANE 22 : N.HERADECANE 22 : N.HERACOSANE 22 : N.HERACOSANE 22 : S.HHERACOSANE	0 0.069377		0.495698 0.068374 0.49024 0.026559 0.151614 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0,000002534 0,000006975 3,695E-07 0,000001763 0,0000008379 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 530885 0 0 073227 0 525023 0 028443 0 16237 0 0 0 478066 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 : METNYLCYCLOHEXAN 41 : TOLUSHE 12 : NOCTANE 43 : MYYLENE 43 : MYYLENE 43 : MYYLENE 13 : N-NONANE 11 : N-DECANE 15 : N-NONANE 15 : N-NONANE 15 : N-NONANE 15 : N-NTIDECANE 15 : N-NTIDECANE 19 : N-PENTADECANE 19 : N-PENTADECANE 20 : N-HEXADECANE 21 : N-HEPTADECANE 22 : N-HEXADECANE 22 : N-HONACOSANE	0 0.68377 0.490247 0.490247 0.026559 0.151616 0 0 0.26559 0.151616 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.495698 0.068374 0.49024 0.028559 0.151614 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0,000002534 0,000006975 3,695E-07 0,000001763 0,000000201 0,000006379 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 530885 0 0 073227 0 525023 0 028443 0 162371 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 : METHYLCYCLOHEXAN 41 : TOLUSHE 12 : N-OCTANE 43 : MSY/LENE 42 : O-AY/LENE 43 : MSY/LENE 13 : N-NONANE 15 : N-HOLOGANE 15 : N-HOLOGANE 15 : N-HOLOGANE 15 : N-HOLOGANE 17 : N-TRIDECANE 19 : N-FENTADECANE 21 : N-HENTADECANE 21 : N-HENTADECANE 21 : N-HENTADECANE 22 : N-HENTADECANE 23 : N-HENTADECANE 24 : N-HENTADECANE 25 : N-HENTADECANE 26 : N-HENTADECANE 26 : N-HENTADECANE 26 : N-HENTADECANE 27 : N-HOLOGANE 28 : N-HENTACOSANE 28 : N-HOLOGANE	0 0.683777 0.4902.47 0.4902.47 0.4902.47 0.0265559 0.1516116 0.0 0.0000000000000000000000000000		0.495698 0.068374 0.49024 0.226559 0.151614 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 530885 0 0 0773227 0 525023 0 028443 0 16237 0 16237 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Properties

Temperature	F	70		
Pressure	psia	14.7		
Enthalpy	Btu/hr	-5604274		
Entropy	Btu/hr/R	-8943.322		
Vapor Fraction		0		
		Total	Liquid 1	Liquid 2
Flowrate	lbmol/hr	300.3396	2.8464	297.4932
Flowrate	lb/hr	5690.6841	331.1135	5359.570
Mole Fraction	IOTH	1	0.009477	0.990523
Mass Fraction		1	0.058185	0.94181
Molecular Weight		18.9475	116.3277	18.0158
Enthalpy	Btu/lbmol	-18659.7894	-16158.7937	-18683 71
Enthalpy	Bfu/lb	-984.8155	-138.9075	-1037.075
Entropy	Btu/lbmol/R	-29.7774	-18.0535	-29.8895
Entropy	Btu/lb/R	-1.5716	-0.155195	-1.6591
Ср	Btu/lbmot/R	1.07 10	57.703	17.9991
Ср	Btu/lb/R		0.496	0.9991
Cv	Blu/lbmot/R		50.7698	17.8638
Cv	Btu/lb/R		0.4364	0.9916
Cp/Cv	Bronsort		1.1366	1.0076
Density	lb/ff3		44.1975	52.3038
Z-Factor			0.006808	0.000747
Flowrate (T-P)	gal'min		0.934088	10.7257
Flowrate (STP)	gat/min		0.927761	10.714
Specific Gravity	GPA STP		0.713459	1
Viscosity	cP		0.557069	0.975963
Thermal Conductivity	Btu/hr/ft/R		0.065922	0.346918
Surface Tension	dyna/cm		21.1389	72.5713
Reid Vapor Pressure (ASTM-A)		Lincor verged		
True Vapor Pressure at 166 F	pain		20 51	
Critical Temperature (Cubic E	F	695.5232		
Critical Pressure (Cubic EOS)	psia	3256.2708		
Dew Point Temperature	F	211.5512		
Bubble Point Temperature	F	70.3082		
Water Dew Point Temperature co				
Liquid 2 Freezing Point	F	31.986		
Stroam Vapor Prossuro	psia	14.7		
Latent Heat of Vaporization (N	Btu/lb	925.5943		
Latent Heat of Vaporization (P	Btu/ib	1063.078		
CO2 Freeze Up		No		
Heating Value (gross)	Btu/SCF	60.03		
Heating Value (net)	Btu/SCF	55.74		
Wobbe Number	Btu/SCF	73.61		
Average Hydrogen Atoms		2.1513		

ATTACHMENT 4 REGULATORY APPLICABILITY

OIL AND GAS STANDARD PERMIT REGISTRATION

GENELLE UNIT A1 AND B1

BURLINGTON RESOURCES OIL & GAS COMPANY LP

ATTACHMENT 4 REGULATORY APPLICABILITY

Burlington Resources Oil & Gas Company LP (Burlington) is submitting this Oil and Gas Standard Permit (SP) Registration to authorize Genelle Unit A1 and B1 (the Site). The Site will include six (6) controlled atmospheric condensate storage tanks and associated loading, two (2) controlled atmospheric produced water storage tanks and associated loading, one (1) flare combustion control device, and piping and fugitive components. The following paragraphs address the Site's compliance with each of the applicable SP requirements. A copy of this SP is located in Attachment 6 of this SP registration.

Non-Rule Air Quality Standard Permit for Oil and Gas Handling and Production Facilities, effective February 27, 2011.

SP(a)(1)

This rule states that the requirements in paragraphs (a)-(k) of this standard permit are applicable to projects located in the Barnett Shale (Archer, Bosque, Clay, Comanche, Cooke, Coryell, Dallas, Denton, Eastland, Ellis, Erath, Hill, Hood, Jack, Johnson, Montague, Palo Pinto, Parker, Shackelford, Stephens, Somervell, Tarrant, and Wise Counties) on or after April 1, 2011. For all other projects and dependent facilities, 30 TAC 116.620 is applicable.

The Site is located in Karnes County and is therefore not required to meet this SP. However, Burlington has opted to meet the Non-Rule Air Quality Standard Permit voluntarily.

SP(a)(2)

This rule states that only one Air Quality Standard Permit for Oil and Gas Handling and Production Facilities for an oil and gas site (OGS) may be registered for a combination of dependent facilities, and may not be used if operationally dependent facilities are authorized by the permit by rule in 30 TAC 106.352 or 116.111. Existing authorized facilities which are not changing certified character or quantity of emissions must only meet subsections (i) and (k) of this standard permit.

All facilities at the Site are included in this SP registration, in accordance with this rule.

SP(a)(3)

This rule does not relieve the owner or operator from complying with any other applicable provision of the Texas Health and Safety Code, Texas Water Code, rules of the Texas Commission on Environmental Quality (TCEQ), or any additional local, state, or federal regulations.

Burlington will comply with the applicable provisions of these regulations.

SP(a)(4)

This rule states that emissions from upsets, emergencies, or malfunctions are not authorized by this standard permit. This standard permit does not regulate methane, ethane, or carbon dioxide.

This SP registration does not include emissions from upset, emergency, or malfunction events. If any such emission events occur, Burlington Resources will manage them in accordance with 30 TAC Chapter 101.

SP(b)(1)-(8)

These rules state the definitions and scope of a Facility, Receptors, and OGS. The rules also state that the definitions of 30 TAC §122.10 relating to the Federal Operating Permits program apply. A project is defined as any new facility or group of operationally dependent facilities at an OGS or physical or operational changes to existing authorized facilities which increase the potential to emit over previously certified limits and must meet all requirements of this standard permit prior to construction or implementation of changes, including an impacts analysis as specified in paragraph (k) of this SP.

This permit application was completed according to the definitions and scope laid out in these rules.

SP(c)(1)

This rule states that existing OGS which are authorized by previous versions of this Standard Permit require registration unless the Project can meet exceptions listed in this requirement.

This Site was not authorized under a previous SP; therefore, this rule does not apply.

SP(c)(2)(A)

This rule states that new, changed, or replacement facilities shall not exceed the thresholds for major source or major modification as defined in 30 TAC §116.12 (Nonattainment and Prevention of Significant Deterioration Review Definitions), and in Federal Clean Air Act, §112(g) or §112(j);

The Site is located in Karnes County which is an attainment county. The Site is a new project and emission totals for the Site do not exceed the thresholds for a major source. Therefore the requirements of this rule have been met.

SP(c)(2)(B)

This rule states that all facilities shall comply with all applicable 40 Code of Federal Regulations (CFR), Parts 60, 61, and 63 requirements for New Source Performance Standards (NSPS), National Emission Standards for Hazardous Air Pollutants (NESHAP), and Maximum Achievable Control Technology (MACT).

NSPS Kb – Standards of Performance for Volatile Organic Liquid Storage Vessels (Including Petroleum Liquid Storage Vessels) for Which Construction, Reconstruction, or Modification Commenced after July 23, 1984 does not apply to the Site's storage tanks due to their capacities and since the condensate is only stored prior to custody transfer.

NSPS KKK – Standards of Performance for Equipment Leaks of VOC From Onshore Natural Gas Processing Plants do not apply since the Site is not a natural gas processing plant.

NSPS LLL – Standards of Performance for Onshore Natural Gas Processing: SO₂ Emissions does not apply since the Site does not have a sweetening unit or sweetening unit followed by a sulfur recovery unit.

The Site is not subject to any Hazardous Air Pollutant (HAP) control requirements listed in 40 CFR Part 61. The Site is not subject to any maximum achievable control requirements listed in 40 CFR Part 63.

SP(c)(2)(D)

This rule states that all facilities shall comply with all applicable requirements of 30 TAC Chapters 111 (Control of Air Pollution from Visible Emissions and Particulate Matter), 112 (Control of Air Pollution from Sulfur Compounds), 113 (Standards of Performance for Hazardous Air Pollutants and for Designated Facilities and Pollutants), 115 (Control of Air Pollution from Volatile Organic Compounds), and 117 (Control of Air Pollution from Nitrogen Compounds).

Explanations of compliance are provided for all applicable rules.

30 TAC Chapter 111 - Control of Air Pollution from Visible Emissions and Particulate Matter Flare control devices found at the site will meet the visible emission requirements listed in 30 TAC 111.111(a)(4). This includes stipulations on visible emissions allowed during periods of time during normal operations.

30 TAC Chapter 112 - Control of Air Pollution from Sulfur Compounds regulates controls needed on emissions related to sulfur compounds. The liquids and gases handled on site do not emit over the prescribed rates.

30 TAC Chapter 113 - Standards of Performance for Hazardous Air Pollutants and for Designated Facilities and Pollutants addresses the control of hazardous air pollutant (HAP) emissions from designated facilities defined within this chapter including municipal solid waste landfills (MSWLFs), medical waste incinerators, and certain other processes/emissions regulated under 40 CFR Parts 61 and 63. The Site will not generate radionuclide emissions and will not include a MSWLF or medical waste incinerator. Consequently, Subchapters B and D are not applicable. The applicability of Subchapter C of this rule, which implements 40 CFR Part 63 by regulating HAP emissions released from source categories, is discussed above under section (c)(2)(B) of the Non-Rule SP.

30 TAC Chapter 115 - Control of Air Pollution from Volatile Organic Compounds regulates VOC emissions according to source type and Site location (county). The Site is located in Karnes County which is considered a covered attainment county. However, the equipment at the Site is exempt from this rule because it does not meet the requirements set forth for applicability for covered attainment counties.

30 TAC Chapter 117 - Control of Air Pollution from Nitrogen Compounds includes regulations for major sources of NO_X in ozone nonattainment areas. The Site is located in Karnes County, which is not listed in the counties of interest as mentioned in this rule text. NOx emitting sources at the Site are exempt from this rule and it's requirements.

SP(c)(3)

This rule states that in order to be eligible for this Standard Permit, an applicant:

- (A) shall meet all applicable requirements as set forth in this standard permit;
- (B) shall not misrepresent all relevant facts in obtaining the permit; and
- (C) shall not be indebted to the state for failure to make payment of penalties or taxes imposed by the commission's jurisdiction.

Burlington will comply with the requirements listed in this rule.

SP(c)(4)(A-D)

All facilities related to the operation of any OGS, under any version of this standard permit (or co-located at a site with an OGS standard permit), previously authorized by permit by rule under 30 TAC Chapter 106 must be incorporated into this standard permit (previous authorizations will be voided), meet all emission limits established by this standard permit and review in accordance with paragraph (b)(8), and meet the requirements of paragraphs (e), (i), and (j) of this standard permit. The requirements in paragraph (h) (BACT) of this standard permit must be met if facilities are changed to increase the potential to emit.

The Site was not previously authorized under any Standard Permits and will meet the requirements of this rule.

SP (d)

This rule lists the specific facilities that have been evaluated for standard permit registration, as well as facilities that are not authorized under standard permit.

The Site does not include any of the facilities listed in the exclusions list of this rule. Additionally, all the facilities located at the Site are listed in the approved facilities list of this rule. Therefore, the requirements of this rule will be met.

SP (e)(1)

All facilities which have the potential to emit air contaminants must be maintained in good working order and operated properly during facility operations. Each operator shall establish and maintain a program to replace, repair, and/or maintain facilities to keep them in good working order. The minimum requirements of this program shall include:

- (A) Compliance with manufacturer's specifications and recommended programs;
- (B) cleaning and routine inspection of all equipment; and
- (C) replacement and repair of equipment on schedules which prevent equipment failures and maintain performance.

Burlington will comply with the requirements of this rule.

SP(e)(2)

This rule states that any facility shall be operated at least 50 feet from any property line or receptor (whichever is closer to the facility). This distance limitation does not apply to the following:

- (A) any fugitive components that are used for isolation and/or safety purposes may be located at 1/2 of the width of any applicable easement;
- (B) any facility at a location for which the distance requirements were satisfied at the time this section is claimed, registered, or certified (provided that the authorization was maintained) regardless of whether a receptor is subsequently built or put to use 50 feet from any OGS facility; or
- (C) existing facilities which are located less than 50 feet from a property line or receptor when constructed and previously authorized. If modified or replaced the operator shall consider, to the extent that good engineering practice will permit, moving these facilities to meet the 50-foot requirement. Replacement facilities must meet all other requirements of this section.

The Site will satisfy the 50-foot requirement.

SP(e)(3)

This rule states that engines and turbines shall meet the emission and performance standards listed in Table 6 and the following requirements:

- (A) liquid fueled engines used for back-up power generation and periodic power needs at the OGS are authorized if the fuel has no more than 0.05% sulfur and the engine is operated less than 876 hours per rolling 12-month period;
- (B) engines and turbines used for electric generation more than 876 hours per rolling 12-month period are authorized if no reliable electric service is readily available and 30 TAC §106.352(m) Table 6 is met. In all other circumstances, electric generators must meet the technical requirements of the Air Quality Standard Permit for Electric Generating Unit (EGU) and the emissions shall be included in the registration under this section;
- (C) all applicable requirements of Chapter 117 of this title (relating to Control of Air Pollution from Nitrogen Compounds);
- (D) all applicable requirements of 40 CFR Parts 60 and 63; and
- (E) compression ignition engines that are rated less than 225 kilowatts (300 hp) and emit less than or equal to the emission tier for an equivalent-sized model year 2008 non-road compression ignition engine located at 40 CFR §89.112, Table 1 are authorized.

This Site does not include any engines or turbines; therefore, this rule does not apply.

SP(e)(4)

This rule states that open-topped tanks or ponds containing VOCs or H_2S are allowed up to a potential to emit equal to 1.0 tpy of VOC and 0.1 tpy of H_2S .

This Site does not involve open-topped tanks or ponds containing VOCs or H₂S. Therefore, this rule does not apply.

SP(e)(5)

All process equipment and storage facilities individually must meet the requirements of BACT listed in Table 10 in paragraph (m). Any combination of process equipment and storage facilities with an uncontrolled PTE of equal to or greater than 25 tpy of VOC must also meet the requirements of Table 10, row titled "Combined Control Requirements". All of the following streams and facilities must be included for this site-wide assessment:

- (A) For any gaseous vent stream with a concentration of 1% VOC must be considered for capture and control requirements;
- (B) For any liquid stream with a potential to emit of equal to or greater than 1 tpy VOC for each vessel or storage facility.

The equipment at the Site will meet the requirements of this rule.

SP (e)(6)

This rule includes requirements for fugitive components based upon the total site fugitive emissions. If the site is subject to LDAR control program, the requirements outlined in Table 9 must be followed.

The emissions represented in this application are done so in accordance with this rule. This Site is not required to utilize the LDAR control program.

SP(e)(7)

This rule states requirements for tanks and vessels that use a paint color to minimize the effects of solar heating. Solar absorptance should be 0.43 or less, as referenced in AP-42 Table 7.1-6 and paint shall be applied in sufficient quantity as to be considered solar resistant. Paint coatings shall be maintained in good condition and will not compromise tank integrity. Minimal amounts of rust may be present not to exceed 10% of the external surface area of the roof or walls of the tank and in no way may compromise tank integrity.

The Site includes a number of liquid storage tanks which will comply with the requirements of this rule.

SP(e)(8)

This rule states that all emission estimation methods including computer programs must be used with monitoring data generated in accordance with Table 8 in section (m). All emission estimation methods must also be used in a way that are consistent with protocols established by the commission or promulgated in federal regulations (NSPS, NESHAPS). Where control is relied upon to meet paragraph (k) (emission limits based on impact evaluation), control monitoring is required.

The Site will comply with all applicable monitoring and record demonstration requirements, and all emission estimation methods will comply with the requirements of this rule.

SP(e)(9)

This rule states that process reboilers, heaters, and furnaces that are also used for control of waste gas streams:

- (A) may claim 50% to 99% destruction efficiency for VOCs and H₂S depending on the design and level of monitoring applied. The 90% destruction may be claimed where the waste gas is delivered to the flame zone or combustion fire box with basic monitoring as specified in 30 TAC §106.352(j). Any value greater than 90% and up to 99% destruction efficiency may be claimed where enhanced monitoring and/or testing are applied as specified in 30 TAC §106.352(j); (B) if the waste gas is premixed with the primary fuel gas and used as the primary fuel in the device through the primary fuel burners, 99% destruction may be claimed with basic monitoring
- as specified in 30 TAC §106.352(j); (C) in systems where the combustion device is designed to cycle on and off, records of run time and enhanced monitoring are required to claim any run time beyond 50%.

There are no heaters at the Site; therefore, this rule does not apply.

SP(e)(10)

This rule states that Vapor Recovery Systems (VRSs) may claim up to 100% control. The VRUs must meet the appropriate design, monitoring, and recordkeeping in subsection (m) Table 7 and Table 8.

The Site does not involve the use of a VRU; therefore, this rule does not apply.

SP(e)(11)

This rule includes design parameters that are required of flare combustion control devices in order to be able to claim a 98% destruction efficiency of 98% for VOCs and H2S and 99% for VOCs containing no more than three carbon atoms that contain no elements other than carbon and hydrogen.

The Site has a flare combustion control device and is claiming a destruction efficiency of 98%. The Site will meet the design parameters required for this destruction efficiency.

SP (e)(12)

This rule establishes the design destruction efficiency that thermal oxidation and vapor combustion control devices may claim, depending on the design and level of monitoring applied, variability of waste gas streams to control, and stack testing.

The Site does not involve the use of thermal oxidizers; therefore, this rule does not apply.

SP (f)(1)

This rule states that for all previous claims of this standard permit (or previous version of this standard permit) existing authorized facilities, or group of facilities, are not required to meet the requirements of this standard permit, with the exception of planned MSS, until a renewal under the standard permit is submitted after December 31, 2015.

The Site is not an existing authorized facility under a previous version of the SP; therefore, this rule does not apply.

SP(f)(2)

This rule states that if no other changes, except for authorizing planned MSS, occur at an existing site under this standard permit, or any previous version of this standard permit, paragraph (b)(7) applies.

- (A) Records demonstrating compliance Paragraph (i) must be kept;
- (B) If the OGS must certify emissions to establish nonapplicability of prevention of significant deterioration (PSD), nonattainment new source review (NNSR), or the federal operating permits program, this certification may be filed using form APD-CERT. No fee is required for this certification;
- (C) Planned MSS shall be incorporated at the next revision or update to a registration under this standard permit after January 5, 2012, and no later than any renewal submitted after December 31, 2015.

The Site is not an existing authorized facility under this SP or a previous version of the SP; therefore, this rule does not apply.

SP(f)(3)

This rule states that facilities, groups of facilities or planned MSS from facilities registered under this standard permit cannot be authorized by a permit under 30 TAC 116.111, General Application.

This registration includes planned MSS emissions authorized under the Non-Rule Oil & Gas Standard Permit.

SP(f)(4)

This rule states that prior to construction or implementation of changes for any project which meets this standard permit, a notification shall be submitted through the ePermits system (or hard copy). This notification shall include the following:

- (A) Identifying information (Core Data) and a general description of the project.
- (B) A fee of \$25 for small businesses as defined in 30 TAC \$106.50 (Registration Fees for Permits by Rule), or \$50 for all others.

An initial notification meeting these requirements was submitted to the TCEQ via the ePermits system on September 17, 2012.

SP(f)(5)

This rule states that for any registration which meets the emission limitations of this standard permit must meet the following:

- (A) Within 90 days after start of operation or implemented changes (whichever occurs first), the facilities must be registered with a PI-1S Standard Permit Application.
- (B) Include a detailed summary of maximum emissions estimates based on representative gas and liquid analysis, equipment design specifications and operations, material type and throughput, other parameters for determining emissions, and documentation demonstrating compliance with applicable requirements.
- (C) Pay registration fee of \$475 for small businesses, or \$850 for all others.
- (D) Construction may begin any time after receipt of written notification to the executive director. Operations may continue after receipt of registration if there are no objections or 45 days after receipt by the executive director of the registration, whichever occurs first.

This SP registration is being submitted in accordance with these requirements.

SP(f)(6)

This rule states that if an OGS emissions increase, either through a change in production or addition of facilities, the site may change authorization (Level 1 or Level 2 PBR in 30 TAC §106.352 or Standard Permit) within 90 days from the initial notification of construction of an oil and gas facility or within 90 days of the change of production or installation of additional equipment, by submitting an initial registration or revision to the PBR or Standard Permit.

At the time of this registration, Burlington maintains that the Site should be permitted under the SP level, as reflected in the initial notification.

SP(f)(7)

This rule states that all registrations, registration revisions, and renewals shall be submitted to the commission through a PI-1S Standard Permit Registration Form. Fee requirements do not apply when there are changes in representations with no increase in emissions within 6-months after a standard permit registration has been issued.

A PI-1S Standard Permit Registration Form is part of this initial SP registration; therefore, the requirements of this rule will be met.

SP(g)

This rule states that any claim under this standard permit must comply with all applicable requirements of 30 TAC §116.610; §116.611, Registration to Use a Standard Permit; §116.614, Standard Permit Fees; and

§116.615, General Conditions. This standard permit supersedes: the notification requirements of 30 TAC §116.615, General Conditions; and the emission limitations of 30 TAC §116.610(a)(1), Applicability.

This SP registration complies with all applicable requirements as listed in this rule and discussed later in this section; therefore, the requirements of this rule will be met.

SP (h)

Total maximum estimated registered or certified emissions shall meet the most stringent of the following: (1) The applicable limits for a major stationary source or major modification for PSD and NNSR as specified in 30 TAC §116.12.

- (2) Paragraph (k) of this standard permit.
- (3) The limits set forth by Paragraph (h)(3).

The Site complies with this rule. Refer to Attachment 5 for the Impacts Evaluation.

SP(i)(1)

This rule states that prior to January 5, 2012, representations and registration of planned MSS is voluntary, but if represented must meet the applicable limits of the standard permit. After January 5, 2012, all emissions from planned MSS activities and facilities must be considered for compliance with applicable limits of the standard permit unless otherwise stated in (b)(7). This section may not be used at a site or for facilities authorized under §116.111 of this title if planned MSS has already been authorized under that permit.

The Site has not been previously authorized under §116.111. Burlington has voluntarily included MSS activities in this SP registration submittal as opposed to the delayed compliance date. Therefore, the requirements of this rule will be met.

SP (i)(2)

This rule states that releases of air contaminants during, or as result of, planned MSS must be quantified and meet the emission limits in this standard permit, as applicable. This analysis must include:

- (A) alternate operational scenarios or redirection of vent streams;
- (B) pigging, purging, and blowdowns;
- (C) temporary facilities if used for degassing or purging of tanks, vessels, or other facilities;
- (D) degassing or purging of tanks, vessels, or other facilities; and
- (E) management of sludge from pits, ponds, sumps, and water conveyances.

This submittal includes emissions representations for alternate operational scenarios during maintenance events. The first scenario occurs when the well is shut in and not producing so that the flare on site may be taken down for maintenance. Emissions related to the standing losses of the liquids already in the storage tanks at the time of shut in are represented in this application as an MSS event. Working losses and flash emissions will not occur as the liquid levels would not be changing.

The second scenario occurs when engines located at sites downstream from this one go down for maintenance. This Site would in turn send all low pressure gas from the separator to flare. The proposed site emissions include this maintenance event and the resulting combustion emissions.

All other MSS activities listed in this rule do not apply to the Site.

SP(i)(3)

This rule states that other planned MSS activities authorized by this standard permit are limited to the following. These planned MSS activities require only recordkeeping of the activity.

- (A) Routine engine component maintenance including filter changes, oxygen sensor replacements, compression checks, overhauls, lubricant changes, spark plug changes, and emission control system maintenance.
- (B) Boiler refractory replacements and cleanings.
- (C) Heater and heat exchanger cleanings.
- (D) Turbine hot standard permit swaps.
- (E) Pressure relief valve testing, calibration of analytical equipment; instrumentation/analyzer maintenance; replacement of analyzer filters and screens.

Burlington will maintain records for the planned MSS activities listed in this SP registration; therefore, the requirements of this rule are met.

SP(i)(4)

This rule states that engine and compressor startups associated with preventative system shutdown activities have the option to be authorized as part of typical operations if:

- (A) prior to operation, alternative operating scenarios to divert gas or liquid streams are registered and certified with all supporting documentation;
- (B) engine/compressor shutdowns shall result in no greater than 4 lb/hr of natural gas emissions; and
- (C) emissions which result from the subsequent compressor startup activities are controlled to a minimum of 98% efficiency for VOC and H_2S .

There are no engine startups at the Site; therefore, this rule does not apply.

SP (j)

This rule states requirements for sampling, monitoring, and records. The following records shall be maintained at the facility site (or an office within Texas having day-to-day operational control of the plant site) in written or electronic form and be readily available to the agency or local air pollution control program with jurisdiction upon request.

- (1) Sampling and demonstrations of compliance shall include the requirements listed in Paragraph (m) Table 7.
- (2) Monitoring and records for demonstrations of compliance shall include the requirements listed in Paragraph (m) Table 8.

Burlington will perform the sampling and monitoring activities and maintain the appropriate records as required in Paragraph (m) Tables 7 and 8; therefore, the requirements of this rule will be met.

SP(k)(1)-(2)

This rule states all impacts evaluations must be completed on a contaminant-by-contaminant basis for any net emissions increases resulting from a project and must meet the following as appropriate:

(A) Compliance with state or federal ambient air standards for nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and H₂S shall be demonstrated using the shortest distance from any emission point, vent, or fugitive component to the nearest property-line within 1 mile of a project.

(B) Compliance with hourly and annual ESLs for benzene shall be demonstrated using the shortest distance from any emission point, vent, or fugitive component to the nearest receptor within 1 mile of a project.

Impacts analyses were conducted in accordance with this rule. Please refer to attachment 5 for the impacts evaluation.

SP(k)(3)

This rule states that impacts evaluations are not required under the following cases:

- (A) If there is no receptor within 1 mile of a registration, no further ESL review is required.
- (B) If there is no property line within 1 mile of a registration, no further ambient air quality standard review is required.
- (C) If the project total emissions are less than 0.039 lb/hr benzene, 0.025 lb/hr H_2S , 2 lb/hr SO_2 , or 4 lb/hr NO_2 , no additional analysis or demonstration of the specified air contaminant is required.

The Site is within 1/4 mile of the nearest receptor. Hourly total emissions for Benzene, SO_2 , NO_x , and H_2S exceed the limits in subsection (C). Therefore, impact evaluations are required for each of these contaminants and are included in Attachment 5.

SP(k)(4)

This rule states that emission evaluations shall meet the following:

- (A) For all evaluations of NO_X to NO_2 , a conversion factor of 0.20 for 4-stroke rich and lean-burn engines and 0.50 for 2-stroke lean-burn engines may be used.
- (B) The maximum predicted concentration or rate at the property boundary or receptor, whichever is appropriate, must not exceed a state or federal ambient air standard or ESL.

There are no engines on the Site. As shown in Attachment 5, the maximum predicted concentrations at the property boundary or receptor were below the state or federal ambient air standard.

SP(k)(5)(A)

This rule states that the following shall be met for ESL reviews:

- (i) If a project's air contaminant maximum predicted concentrations are equal to or less than 10% of the appropriate ESL, no further review is required.
- (ii) If a project's air contaminant maximum predicted concentrations combined with project increases for that contaminant over a 60-month period after the effective date of this revised section are equal to or less than 25% of the appropriate ESL, no further review is required.
- (iii) In all other cases, all facility emissions at an OGS, regardless of authorization type, located within 1 mile of a project requiring registration under this section shall be evaluated.

Burlington has evaluated all Site emissions for impacts analysis purposes. Refer to Attachment 5 for modeling results.

SP(k)(5)(B)

This rule states that the following shall be met for state and federal ambient air quality standard reviews:

- (i) If a project's air contaminant maximum predicted concentrations are equal to or less than the significant impact level (also known as de minimis impact in Chapter 101 of this title (relating to General Air Quality Rules)), no further review is required;
- (ii) In all other cases, all facility emissions at an OGS, regardless of authorization type, located within 1 mile of a project requiring registration under this section shall be evaluated.

Please refer to Attachment 5.

SP(k)(6)

This rule states that evaluation must comply with one of the methods listed with no changes or exceptions.

- (A) Emission impact Tables 2 5F in Paragraph (m) may be used in accordance with the limits and descriptions in Paragraph (m) Table 1.
- (B) A screening model may be used to demonstrate acceptable emissions from an OGS under this section if all of the parameters in the screening modeling protocol provided by the commission are met.
- (C) A refined dispersion model may be used to demonstrate acceptable emissions from an OGS if all of the parameters in the refined dispersion modeling protocol provided by the commission are met.

Screen modeling was used to satisfy the requirements of this rule for the NOx and SO_2 emissions impacts analysis. The TCEQ provided impact Tables were utilized for Benzene and H_2S . These results are provided in Attachment 5.

SP (1)

This paragraph states that 30 TAC §116.620 is applicable for existing unchanged facilities and new or changing facilities as specified in paragraph (a)(1) of this standard permit.

Burlington has voluntarily elected to comply with paragraphs (a) through (k) of this Non-Rule SP. Therefore, paragraph (l) of this rule is not applicable.

30 TAC §116.610. Applicability, effective February 1, 2006

30 TAC §116.610(a)(1)

This paragraph of the TCEQ standard permit applicability rules requires that any project with a net increase in any air contaminant other than carbon dioxide, water, nitrogen, methane, ethane, hydrogen, oxygen, or those for which a National Ambient Air Quality Standard (NAAQS) has been established must meet the emission limitations of 30 TAC §106.261(2) or (3) or §106.262(2), unless otherwise specified by a particular standard permit.

The Site is electing to comply with the requirements of the Non-Rule Air Quality Standard Permit for Oil and Gas Handling and Production Facilities effective February 27, 2011, which supersedes the emission limitations of this rule. Therefore, this rule does not apply.

30 TAC §116.610(a)(2)

This rule states that a project authorized by standard permit must meet the conditions of the standard permit in effect at the time construction or operation is commenced.

The Site will meet the requirements of the Non-Rule Air Quality SP for Oil and Gas Handling and Production Applicability effective February 27, 2011. Should another SP come into effect prior to TCEQ concurrence with this SP authorization, Burlington will comply with the requirements of that version of the SP.

30 TAC §116.610(a)(3)

This rule requires that the project comply with applicable provisions of the Federal Clean Air Act (FCAA), §111 (concerning New Source Performance Standards (NSPS), as listed under 40 Code of Federal Regulations (CFR) Part 60.

The applicability of this rule is discussed above under section (c)(2)(B) of the Non-Rule SP.

30 TAC §116.610(a)(4)

This rule requires that the proposed project comply with the applicable provisions of the FCAA, §112 concerning Hazardous Air Pollutants (HAPs), as listed under 40 CFR Part 61.

The applicability of this rule is discussed above under section (c)(2)(B) of the Non-Rule SP.

30 TAC §116.610(a)(5)

This rule states that the project must comply with applicable maximum achievable control technology (MACT) standards listed under 40 CFR Part 63 or 30 TAC Chapter 113, Subchapter C relating to National Emissions Standards for Hazardous Air Pollutants.

The applicability of this rule is discussed above under section (c)(2)(B) of the Non-Rule SP.

30 TAC §116.610(a)(6)

This rule applies to facilities that are subject to the Mass Emissions Cap and Trade requirements listed in 30 TAC Chapter 101, Subchapter H, Division 3.

These requirements do not apply to the Site, which is located in Karnes County, Texas.

30 TAC §116.610(b)

This rule states that any project, except those authorized under 30 TAC §116.617 of this title (relating to Standard Permits for Pollution Control Permits), which constitute a new major source or major modification under the new source review requirements of the FCAA, Part C or Part D is subject to the requirements of 30 TAC §116.110 rather than 30 TAC Chapter 116 Subchapter F.

The Site is not a major source of air pollutants, with respect to Prevention of Significant Deterioration (PSD) permitting regulations. The Site is located in Karnes County, which is an attainment county; therefore, the Site is not required to be evaluated for nonattainment permitting requirements.

30 TAC §116.610(c)

This rule prohibits circumvention of the requirements of 30 TAC §116.110 by artificial limitations.

Burlington is not taking any artificial limitations on the Site's emissions. Therefore, the condition of this rule has been met.

30 TAC §116.610(d)

This rule states that any project involving a proposed affected facility (as defined in §116.15(1) of this title (relating to Section 112(g) Definitions)) shall comply with all applicable requirements under Subchapter C of this chapter (relating to Hazardous Air Pollutants: Regulations Governing Constructed and Reconstructed Major Sources (FCAA, §112(g), 40 CFR Part 63)).

The Site is not subject to FCAA §112(g), 40 CFR Part 63 requirements, referenced in 30 TAC Chapter 116 Subchapter C.

30 TAC §116.611. Registration to Use a Standard Permit, effective December 11, 2002

This rule states that, if required, registration to use a standard permit shall be sent by certified mail, return receipt requested, or hand delivered to the executive director, the appropriate commission regional office, and any local air pollution program with jurisdiction, before a standard permit can be issued. The registration, at a minimum, must include the basis of the air emission estimates, quantification of all emission increases and decreases associated with the project, sufficient information to demonstrate the project's compliance with \$116.610(b), information describing efforts to minimize emissions increases that will result from the project, a description of the project and related processes, and a description of any equipment installed. A certified registration must be submitted to avoid applicability of Chapter 122 and be maintained in accordance with \$116.115.

A certified registration for this Site is being submitted to the appropriate state and local entities using the required forms and including all appropriate demonstrations of compliance with the requirements of this rule.

30 TAC §116.614. Standard Permit Fees, effective October 20, 2002

This rule states that any person who registers to use a standard permit or an amended standard permit, or to renew a registration to use a standard permit shall remit at the time of registration, a flat fee of \$900 for each standard permit being registered. All standard permit fees will be remitted in the form of a check, certified check, electronic funds transfer, or money order made payable to the TCEQ and delivered with the permit registration.

A fee of \$850.00 for this SP is being remitted to the TCEQ with the SP registration. A fee of \$50.00 was submitted with the initial notification on September 17, 2012.

30 TAC §116.615. General Conditions, effective March 15, 2007

30 TAC §116.615(1)

This condition states that emissions from the facility must comply with all applicable rules and regulations adopted under Texas Health and Safety Code, Chapter 382, and with the intent of the Texas Clean Air Act (TCAA), including protection of health and property of the public.

The Site emissions will comply with all TCEQ rules and regulations as well as with the intent of the TCAA, including protection of the health and property of the people near the Site.

30 TAC §116.615(2)

This condition states that all representations with regard to construction plans, operating procedures, and maximum emission rates in any registration package become conditions upon which the facility, or changes thereto, must be constructed and operated.

The Site will be operated as represented in this SP. If any representation changes occur, Burlington will verify that the emission sources remain eligible for a SP and notify the executive director of any changes no later than 30 days after the change, in accordance with this condition.

30 TAC §116.615(3)

This condition states that all changes authorized under standard permit to a facility previously authorized under 30 TAC §116.110 shall be incorporated into that permit at such time as the permit is amended or renewed.

The Site was not previously authorized under 30 TAC §116.110; therefore, this condition does not apply.

30 TAC §116.615(4)

This condition states that start of construction, construction interruptions exceeding 45 days, and completion of construction shall be reported to the appropriate regional office not later than 15 working days after occurrence of the event, unless otherwise specified in the standard permit.

Burlington will comply with the reporting requirements listed in this condition.

30 TAC §116.615(5)

This condition lists requirements associated with start-up notification to the appropriate air program regional office and any other air pollution control program having jurisdiction.

This rule is not applicable for sites subject to the Non-Rule Air Quality SP for Oil and Gas Handling and Production Facilities Applicability sections (a)-(k).

30 TAC §116.615(6)

This condition contains requirements associated with stacks or process vents required to perform sampling operations.

Burlington will continue to conduct sampling required by this SP, as applicable. Should the TCEQ request stack sampling of other sources authorized by this SP, Burlington will comply with this section.

30 TAC §116.615(7)

This condition requires that the standard permit holder demonstrate or otherwise justify the equivalency of emission control methods, sampling or other emission testing methods, and monitoring methods proposed as alternatives to methods indicated in the conditions of the standard permit.

Burlington is not proposing alternative emission control methods, sampling or other emission testing methods, or monitoring methods at this time. Should Burlington elect to propose such alternatives, Burlington will do so in accordance with this condition.

30 TAC §116.615(8)

This condition contains the recordkeeping requirements associated with the standard permit.

Burlington will retain a copy of the SP along with information and data sufficient to demonstrate applicability of, and compliance with, the SP and will be made available at the request of representatives of the executive director, the EPA, or any air pollution control program having jurisdiction.

30 TAC §116.615(9)

This condition requires that facilities covered by the standard permit not be operated unless all air pollution emission capture and abatement equipment is maintained in good working order and operating properly during normal facility operations.

Equipment will not be operated unless the air emissions control equipment is operating properly during normal facility operations. Any emission events that are not included in this SP will be reported in accordance with 30 TAC §101.201 and §101.211.

30 TAC §116.615(10)

This condition states that registration of a standard permit by a standard permit applicant constitutes an acknowledgement and agreement that the holder will comply with all rules, regulations, and orders of the commission issued in conformity with the TCAA and the conditions precedent to the claiming of the standard permit.

Burlington will comply with all applicable rules, regulations, and orders of the commission.

30 TAC §116.615(11)

This condition states that if a standard permit for a facility requires a distance, setback, or buffer from other property or structures as a condition of the permit, the determination of whether the distance, setback, or buffer is satisfied shall be made on the basis of conditions existing at the earlier of:

- (A) the date new construction, expansion, or modification of a facility begins; or
- (B) the date any application or notice of intent is first filed with the commission to obtain approval for the construction or operation of the facility.

Burlington will comply with the distance determination requirements stated in this rule, as applicable.

Air Quality Standard Permits (SP) General Requirements Checklist Title 30 Texas Administrative Code §§116.610-116.615

Check the most appropriate answer and include any additional information in the spaces provided. If additional space is needed, please include an extra page and reference the rule number. The SP forms, tables, checklists, and guidance documents are available from the TCEQ, Air Permits Division web site at: www.tceq.state.tx.us/permitting/air/nav/standard.html.

Most Standard Permits require registration with the commission's Office of Permitting, Remediation, and Registration in Austin. The facilities and/or changes to facilities can be registered by completing a <u>Form PI-1S</u>, "Registration for Air Standard Permit." This checklist should accompany the registration form to expedite any registration review.

	CHECK THE MOST APPROPRIATE ANSWERS AND FILL	IN THE REQUESTED INFO	PRMATION
Rule	Questions/Description	Information	Response
116.610 (a)(1)	Are there net emissions increases associated with this registration? If "YES," will net emission increases of air contaminants from the project, other than those for which a National Ambient Air Quality Standard (NAAQS) has been established, meet the emission limits of § 106.261 or § 106.262?	Attach emissions summary & calculations	☑YES ☑NO □YES ☑NO
	If "NO," does the specific standard permit exempt emissions from this limit?		✓ YES □ NO
	Do any of the <u>Title 40 Code of Federal Regulations Part (CFR) 60</u> , New Source Performance Standards apply to this registration? If "YES," list subparts	List subparts:	□YES☑NO
116.610 (a)(4)	Do any Hazardous Air Pollutant requirements apply to this registration? If "YES," list subparts	List subparts:	□ YES ☑ NO
116.610 (a)(5)	Do any maximum achievable control technology (MACT) standards as listed under 40 CFR Part 63 or Chapter 113, Subchapter C (National Emissions Standard for Hazardous Air for Source Categories) apply to this registration? If "YES," list subparts	List subparts:	□YES √ NO
116.610 (a)(6)	Will additional emission allowances under <u>Chapter 101</u> , <u>Subchapter H</u> , <u>Division 3</u> , Emissions Banking and Trading, need to be obtained following this registration?		□YES ☑ NO

Air Quality Standard Permits (SP) General Requirements Checklist Title 30 Texas Administrative Code §§116.610-116.615

	CHECK THE MOST APPROPRIATE ANSWERS AND FILL	IN THE REQUESTED INFO	PRMATION
Rule	Questions/Description	Information	Response
	Is the following documentation included with this registration:		✓YES □NO
(a) (1-6)	Emissions calculations including the basis of the calculations?		✓YES □ NO
	Quantification of all emission increases and/or decreases associated with this project?		✓YES □NO
	Sufficient information demonstrating that this project does not trigger PSD or NNSR review?		✓YES □NO
	Description of efforts to minimize collateral emissions increases associated with this project?		✓YES □NO
	Process descriptions including related processes?		✓YES □NO
	Description of any equipment being installed?		✓YES □NO
116.614	Are the required fee and a copy of the check or money order provided with the application?		✓YES □NO
116.615 (1)	Will emissions from the facility comply with all applicable rules and regulations of the commission adopted under Texas Health and Safety Code, Chapter 382, and with the intent of the Texas Clean Air Act?		▼YES □NO
116.615 (2)	Do you understand that all representations with regard to construction plans, operating procedures, and maximum emission rates in this registration become conditions upon which the facility will be constructed and operated?		☑YES □NO
116.615 (3)	Do you understand that all changes authorized by this registration need to be incorporated into the facility's permit if the facility is currently permitted under §116.110 (relating to Applicability)?		✓ YES □NO
116.615 (9) 617 (e)(1)	Will all air pollution emission capture and abatement equipment be maintained in good working order?		✓ YES □NO
116.615 (10)	Will the facility comply with all applicable rules and regulations of the TCEQ, the Texas Health and Safety Code, Chapter 382, and the Texas Clean Air Act?		✓YES □NO

ATTACHMENT 5 IMPACTS EVALUATION

OIL AND GAS STANDARD PERMIT REGISTRATION

GENELLE UNIT A1 AND B1

BURLINGTON RESOURCES OIL & GAS COMPANY LP

SUMMARY OF NO_X SCREEN3 MODELING RESULTS OIL & GAS STANDARD PERMIT REGISTRATION GENELLE UNIT A1 AND B1

BURLINGTON RESOURCES OIL & GAS COMPANY LP

								Annual		
			${ m PTE}_{ m (NOx, HR)}^{ m a}$	C(NOx,HR)	GLC(NOX,HR) ^c	$GLC(NOx,HR)^c$ $R(NO_2/NO_{X)}^d$		Conversion	Conversion GLC(NOx,YR)	
FIN	EPN	Description	(lb/hr)	(µg/m³)	(mg/m³)	(lb NO ₂ /lb NO _X)	(mg/m³)	Factor (CF) (µg/m³)	(µg/m³)	
Normal Operations	erations									
FL-1	FL-1	Flare Combustion (normal operations pilot)	0.003	152.30	0.46	0.75	0.35	80.0	0.03	
EL-1	FL-1	Flare Combustion (normal operations assist gas)	0.22	12.48	2.75	0.75	2.06	0.08	0.16	
FL-1	FL-1	Flare Combustion (normal operations waste gas condensate)	1.15	3.22	3.70	0.75	2.78	80.0	0.22	
FL-1	FL-1	Flare Combustion (normal operations waste gas produced water)	0.13	19.74	2.57	0.75	1.93	80.0	0.15	
Maintenand	Maintenance. Startup. and Shutdown	uwopin								
FL-1	FL-1	Flare Combustion (1p separator waste gas)	28.78	0.15	4.32	0.75	3.24	0.08	0.26	

0.82 20.0020.82 100

> 70.00 80.36 188

Karnes County NO₂ Background Concentration (µg/m³)^g;

Total NO₂ Concentration (µg/m³):

Total Off-Property Concentration (μg/m³):

NO₂ NAAQS (µg/m³):

 $^{\rm 3}$ The hourly and annual NO $_{\rm 2}$ background concentration is based on TCEQ Guidance.

a PTE(NO2,HR) = Hourly PTE NOX.

 $^{^{}b}$ C(NO_A, IR) = Hourly NO_X concentration predicted by SCREEN3 model, using a nominal 1 lb/hr NO_X emission rate.

An example calculation for hourly NO_{X} ground level concentration for FIN FL-1 (normal operations pilot) follows: $(\operatorname{GLC}_{(NO_X,HR)} = \operatorname{Hourly} \text{ ground level concentration of } \operatorname{NO}_X.$ $GLC(NO_{x}HR) = PTE(NO_{x}HR) * C(NO_{x}HR)$

 $[\]mathrm{GLC}(No_{x}\mathrm{HR}) = 0.003 \; lb/hr \; * \; 152.3 \; \mu g/m^{3}/1 \; lb/hr$

 $GLC(No_x,HR) = 0.46 \mu g/m^3 NO_x$

⁴ R(No₂/No₂) = NO₂/NO_X ratio from TCEQ guidance (attached).

An example calculation for hourly NO_2 ground level concentration for FIN FL-1 follows: $\mathrm{GLC}_{(NO_2,HR)} = \mathrm{Hourly} \ ground \ level \ concentration \ of \ \mathrm{NO}_2.$ $\operatorname{GLC}(\text{No}_2\text{-}\text{HR}) = \operatorname{GLC}(\text{No}_x\text{-}\text{HR}) * R(\text{No}_2\text{-}\text{No}_x)$

 $^{{\}rm GLC}_{(NO_2,HR)} = 0.46~\mu {\rm g/m}^3 * 0.75~{\rm lb~NO_2/lb~NO_X}$

 $[\]mathrm{GLC}(\text{No}_2\text{,HR}) = 0.34~\mu\text{g/m}^3~\mathrm{NO}_2$

 $[^]f$ GLC(No2,YR) – Annual ground level concentration of $\mathrm{NO}_2.$

An example calculation for annual NO2 ground level concentration for FIN FL-1 follows:

 $[\]operatorname{GLC}(\kappa o_2, \operatorname{yr}) = \operatorname{GLC}(\kappa o_2, \operatorname{HR}) \ ^*\operatorname{CF}$

 $GLC(No_2, YR) = 0.34 \ \mu g/m^3 * 0.08$

 $GLC(No_3,YR) = 0.03 \ \mu g/m^3 \ NO_2$

Maximum concentrations are shown for each stream sent to the Flare. Note that, the maximum distance is not the same for each stream, but representing all at the maximum concentration is the most conservative approach. Additionally, not all events shown here would occur at the same time (MSS events would not occur during normal operations events), therefore the emissions shown are conservatively represented.

SUMMARY OF SO₂ SCREEN3 MODELING RESULTS OIL & GAS STANDARD PERMIT REGISTRATION

BURLINGTON RESOURCES OIL & GAS COMPANY LP GENELLE UNIT A1 AND B1

						Annual	
			$\mathrm{PTE}_{\mathrm{(SO2,HR)}^{a}}$	$C_{(SO2,HR)}^b$	$\mathrm{GLC_{(SO_2,HR)}^c}$	Conversion	GLC(SO2,YR)
FIN	EPN	Description	(lb/hr)	$(\mu g/m^3)$	(µg/m³)	Factor (CF)	(µg/m³)
Normal Operations	oerations						
FI,-1	FI,-1	Flare Combustion (normal operations pilot)	0.0004	152.30	90.0	0.08	0.005
FL-1	FL-1	Flare Combustion (normal operations assist gas)	0.03	12.48	0.37	0.08	0.03
FL-1	FL-1	Flare Combustion (normal operations waste gas condensate)	0.04	3.22	0.13	0.08	0.01
FL-1	FL-1	Flare Combustion (normal operations waste gas produced water)	0.002	19.74	0.04	0.08	0.003
Maintenan	Maintenance. Startup, and Shutdown	uwopi					
FL-1	FL-1	Flare Combustion (Ip separator waste gas)	5.42	0.15	0.81	80.0	90.0
			Total SO ₂ Cc	Total SO ₂ Concentration (µg/m³):	1.41		0.11

		a PTE(so2,HR) = Hourly PTE SO2.
08	196	SO ₂ NAAQS (µg/m³):
8.11	51.41	Total Off-Property Concentration (µg/m³):
8.00	50.00	Karnes County SO ₂ Background Concentration (µg/m³) ^e :
		ל-ני

b C(so2HR) = Hourly SO2 concentration predicted by SCREEN3 model, using a nominal 1 lb/hr SO2 emission rate.

Maximum concentrations are shown for each stream sent to the Flare. Note that, the maximum distance is not the same for each stream, but representing all at the maximum concentration is the most conservative approach. Additionally, not all events shown here would occur at the same time (MSS events would not occur during normal operations events), therefore the emissions shown are conservatively represented.

 $^{^{}c}$ GLC(so2,HR) = Hourly ground level concentration of SO2.

An example calculation for hourly SO2 ground level concentration for FIN FL-1 (nonnal operations pilot) follows:

 $GLC_{(SO2,HR)} = (0.000 \ lb/hr) * (152.30 \ \mu g/m3/1 \ lb/hr)$ GLC(SO2,HR) = PTE(SO2,HR) * C(SO2,HR)

 $GLC(so2,HR) = 0.06 \ \mu g/m3 \ SO2$

 $[^]d$ GLC(SO $_2{\rm YR}) = Annual ground level concentration of SO<math display="inline">_2.$

An example calculation for annual SO₂ ground level concentration for FIN FL-1 follows:

 $GLC(so_2YR) = (0.06 \mu g/m3) * (0.08)$ $GLC(so_bYR) = GLC(SO2,HR) * CF$

 $GLC(so_{_{2}}vr_{R})=~0.005~\mu g/m3~SO2$

The hourly and annual SO₂ background concentration is based on TCEQ Guidance.

OIL AND GAS STANDARD PERMIT REGISTRATION BENZENE EMISSION IMPACT ANALYSIS GENELLE UNIT A1 AND B1

BURLINGTON RESOURCES OIL & GAS COMPANY LP

4.5 Hourly ESL (µg/m3): Annual ESL (µg/m3):

0.00001Calculated Health (tpy) 1.52 0.15 0.03 0.001 6.82 0.04 8.85 0.21 0.08 Effects Review 0.00002 (Ib/hr) 0.02 0.003 0.02 0.17 0.05 6.10 0.09 6.45 (hourly) (annual) 0.0003%15.38% 0.31% 7.69% 1.54% 1.54% 69.23% 0.77% WR 0.001% 2.56% 0.001% 5.13% 1.03%0.05% 0.77% 89.74% 0.26% (µg/m³/lb/hr) Annual G 25 25 92 25 25 25 25 25 25 95 95 Distance Height Stack Parameters Hourly Ξ 30 30 30 30 25 25 2162 2162 2162 2162 2162 Ξ 2083 2162 2162 0.0000004 0.0004 0.00001Benzene Emissions 0.002 (tpy) 0.002 0.001 0.02 0.01 0.09 0.13 0.000004 (lb/hr) 0.000003 0.0002 0.004 0.003 0.0010.35 0.02 0.01 0.39 Maintenance, Startup, and Shutdown Impacts Analysis: Ξ SEP-GAS **FRUCK2 IRUCK1** TK-08 TK-02 TK-03 TK-02 TK-03 IK-04 TK-05 JK-06 TK-01 TK-04 TK-05 TK-06 TK-07 TK-08 TK-07 Total FL-1 Normal Operations EPN TK-02 TK-03 TK-04 TK-05 TK-06 TK-06 FL-1 TK-01 IK-08 FL-1 FL-1 FL-1

Per the non-Rule Oil and Gas Standard Permit (k)(4)(B), the site's air contaminant maximum predicted concentrations are less than the appropriate ESL. Therefore the impacts analysis meets the requirements of the Oil and Gas Standard Permit. 0.13 6.45 Calculated Benzene Health Effects Review (lb/hr):

0.39

Calculated Benzene Emissions (lb/hr):

Health Effects Calculations and Impact factors G and WR, and equations from Air Quality Standard Permit for Oil and Gas Handling and Production Facilities (k) and

Table 1: Emission Impact Tables Limits and Descriptions

Fable 3: Flares and Thermal Destruction Devices Table 2: Fugitives and Process Vents Table

Short-Term ESI, 170 µg/m² and Long-Term ESI, 4.5 µg/m³ per TCEQ Development Support Document Benzene CAS #: 71-43-2, dated October 15, 2007

NOTE: Not all events shown here would occur at the same time (MSS events would not occur during normal operations events), therefore the analysis shown is conservatively represented.

H₂S EMISSION IMPACT ANALYSIS

OIL AND GAS STANDARD PERMIT REGISTRATION GENELLE UNIT A1 AND B1

BURLINGTON RESOURCES OIL & GAS COMPANY LP

State Property Line Standard

108

(µg/m3):

							Calculated
		H_2S	Stack Parameters	rameters			Health Effects
		Emissions	Distance	Height	G	WR	Review
EPN	FIN	(lb/hr)	(ft)	(tt)	(µg/m³/lb/hr)	(hourly)	(lb/hr)
Normal Operations	erations						
FUG	FUG	0.0004	50	3	4375	0.33%	0.0001
	TK-01						
	TK-02						
	TK-03	70000	9	ć	5	70000	000
FL-1	TK-04	0.0004	00	30	,	0.33%	0.01
	TK-05						
	TK-06						
EI 1	TK-07	200000	03	3.0	73	70000	0 001
FL-1	TK-08	0.00002	00	30	,	0.07%	0.001
FL-1	FL-1	0.001	50	30	43	0.83%	0.02
7 . 54	5	· ·					
Maintenanc	Maintenance, Startup, and Shutdown	Idown					
					•		

Impacts Analysis:

Hourly

1.26

50.00% 50.00%

43

30

50

0.06

SEP-GAS

FL-1

FL-1

0.12

Total FL-1

0.12 Calculated H₂S Emissions (lb/hr):

2.55 Calculated H2S Health Effects Review (lb/hr): Per the non-Rule Oil and Gas Standard Permit (k)(4)(B), the site's air contaminant maximum predicted concentrations are less than the appropriate ESL. Therefore the impacts analysis meets the requirements of the Oil and Gas Standard Permit. Health Effects Calculations and Impact factors G and WR, and equations from Air Quality Standard Permit for Oil and Gas Handling and Production Facilities (k) and Tables

Table 1: Emission Impact Tables Limits and Descriptions Table 2: Fugitives and Process Vents Table

Table 3: Flares and Thermal Destruction Devices

State Property Line Standard 108 µg/m3 per 30 TAC Ch 112 and TCEQ Modeling Guidance

NOTE: Not all events shown here would occur at the same time (MSS events would not occur during normal operations events), therefore the analysis shown is conservatively represented.

```
*** SCREEN3 MODEL RUN ***
*** VERSION DATED 96043 ***
```

Genelle Unit A1 and B1 Flare Normal Ops Pilot

```
SIMPLE TERRAIN INPUTS:

SOURCE TYPE = FLARE

EMISSION RATE (G/S) = .125800

FLARE STACK HEIGHT (M) = 9.1440

TOT HEAT RLS (CAL/S) = 1356.00

RECEPTOR HEIGHT (M) = .0000

URBAN/RURAL OPTION = RURAL

EFF RELEASE HEIGHT (M) = 9.2873

BUILDING HEIGHT (M) = .0000

MIN HORIZ BLDG DIM (M) = .0000

MAX HORIZ BLDG DIM (M) = .0000
```

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = .022 M**4/S**3; MOM. FLUX = .014 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

```
SCREEN- flare pilot
0 1.0 10000.0 1
  2600.
                                                          16.25
                                                                    80.79
           16.04
                           6
                                 1.0
                                                                             25.03
                                                                                        NO
  2700.
           15.32
                                 1.0
                                          1.0 10000.0
                                                          16.25
                                                                    83.59
                                                                             25.55
                           6
                                                                                        NO
                                                          16.25
  2800.
           14.65
                           6
                                 1.0
                                          1.0 10000.0
                                                                    86.39
                                                                             26.06
                                                                                        NO
                                          1.0 10000.0
1.0 10000.0
1.0 10000.0
  2900.
           14.02
                                                          16.25
                                                                    89.17
                                                                             26.56
                           6
                                 1.0
                                                                                        NO
                                                          16.25
16.25
  3000.
           13.44
                           6
                                 1.0
                                                                    91.94
                                                                             27.05
                                                                                        NO
  3500.
           11.16
                                  1.0
                                                                   105.67
                                                                             29.05
                           6
                                                                                        NO
                                                          16.25
16.25
  4000.
                                                                   119.19
                                                                             30.90
           9.469
                                  1.0
                                          1.0 10000.0
                           6
                                                                                        NO
  4500.
                                          1.0 10000.0
           8.180
                                  1.0
                                                                   132.52
                                                                             32.63
                           6
                                                                                        NO
                                                          16.\bar{25}
                                          1.0 10000.0
  5000.
           7.169
                                  1.0
                                                                   145.68
                                                                             34.26
                                                                                        NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND
                                                   1. M:
                                                 320.0 10.75
           152.3
                                 1.0
                                                                   12.81
                                                                              7.66
   102.
                          3
                                       1.0
                                                                                        NO
```

DWASH= MEANS NO CALC MADE (CONC = 0.0)
DWASH=NO MEANS NO BUILDING DOWNWASH USED
DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED
DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED
DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** SUMMARY OF SCREEN MODEL RESULTS ***
*** SUMMARY OF SCREEN MODEL RESULTS ***

CALCULATION PROCEDURE	MAX CONC (UG/M**3)	DIST TO MAX (M)	TERRAIN HT (M)
STMPLE TERRATN	152.3	102.	0.

```
*** SCREEN3 MODEL RUN ***
*** VERSION DATED 96043 ***
```

Genelle Unit A1 and B1 Flare Assist

```
SIMPLE TERRAIN INPUTS:

SOURCE TYPE = FLARE
EMISSION RATE (G/S) = .125800
FLARE STACK HEIGHT (M) = 9.1440
TOT HEAT RLS (CAL/S) = 113048.
RECEPTOR HEIGHT (M) = .0000
URBAN/RURAL OPTION = RURAL
EFF RELEASE HEIGHT (M) = 10.3309
BUILDING HEIGHT (M) = .0000
MIN HORIZ BLDG DIM (M) = .0000
MAX HORIZ BLDG DIM (M) = .0000
```

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF $10.0\,$ METERS WAS ENTERED.

BUOY. FLUX = 1.874 M**4/S**3; MOM. FLUX = 1.143 M**4/S**2.

*** FULL METEOROLOGY ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
1. 100.	.0000 10.86	1	1.0	1.0	320.0 960.0	44.57 21.75	.91 27.05	.83 14.32	NO NO
200. 300.	12.48 11.65	3	3.5	3.5	1120.0	20.11 27.44	23.78 34.64	14.30 20.91	NO NO
400. 500.	10.91 10.30	4	3.0	3.0	960.0 800.0	21.72 23.99	29.63 36.36	15.61 18.71	NO NO
600. 700.	9.635 8.887	4	2.0 1.5	2.0 1.5 1.5	640.0 480.0	27.41 33.10	43.00 49.62 55.95	21.77 24.90	NO NO
800. 900. 1000.	8.375 7.752 7.164	4 4 4	1.5 1.5 1.0	1.5	480.0 480.0 320.0	33.10 33.10 44.48	62.22 68.82	27.56 30.18 33.54	NO NO NO
1100. 1200.	6.830 6.481	4	$1.0 \\ 1.0 \\ 1.0$	1.0	320.0 320.0 320.0	44.48 44.48	74.95 81.03	35.49 37.39	NO NO
1300. 1400.	6.134 5.798	4	$\frac{1.0}{1.0}$	1.0	320.0 320.0	44.48 44.48	87.07 93.06	39.23 41.04	NO NO
1500. 1600.	5.478 5.267	4 6	$\frac{1.0}{1.0}$	$\frac{1.0}{1.0}$	320.0 10000.0	44.48 40.56	99.02 52.71	42.80 20.67	NO NO
1700. 1800.	5.445 5.585	6 6	$\frac{1.0}{1.0}$	1.0	10000.0 10000.0	40.56 40.56	55.61 58.51	21.34 22.00	NO NO
1900. 2000.	5.691 5.767	6	$\frac{1.0}{1.0}$	1.0	10000.0	40.56 40.56	61.39 64.26	22.65	NO NO
2100. 2200. 2300.	5.778 5.772 5.753	6 6 6	$1.0 \\ 1.0 \\ 1.0$	1.0	10000.0 10000.0 10000.0	40.56 40.56 40.56	67.11 69.96 72.79	23.83 24.36 24.89	NO NO NO
2400. 2500.	5.723 5.683	6	$1.0 \\ 1.0 \\ 1.0$	1.0	10000.0	40.56 40.56	75.61 78.42	25.40 25.91	NO NO
·		-			ge 1				

```
SCREEN- flare assist
.0 1.0 10000.0 40
  2600.
                                                        40.56
           5.636
                          6
                                 1.0
                                                                  81.23
                                                                           26.40
                                                                                      NO
  2700.
           5.583
                                 1.0
                                         1.0 10000.0
                                                         40.56
                                                                  84.02
                                                                           26.90
                          6
                                                                                      NO
           5.524
                                                                  86.80
  2800.
                          6
                                 1.0
                                         1.0 10000.0
                                                         40.56
                                                                           27.38
                                                                                      NO
                                        1.0 10000.0
1.0 10000.0
1.0 10000.0
                                                         40.56
40.56
40.56
40.56
  2900.
           5.461
                                                                  89.57
                                                                           27.86
                          6
                                1.0
                                                                                      NO
  3000.
           5.395
                          6
                                 1.0
                                                                  92.33
                                                                            28.33
                                                                                      NO
  3500.
           4.991
                          6
                                 1.0
                                                                 106.00
                                                                            30.24
                                                                                      NO
                                                                 119.48
132.78
  4000.
           4.609
                          6
                                 1.0
                                         1.0 10000.0
                                                                            32.02
                                                                                      NO
                                                         40.56
  4500.
                                         1.0 10000.0
           4.260
                          6
                                 1.0
                                                                            33.70
                                                                                      NO
                                         1.0 10000.0
                                                                 145.93
  5000.
           3.945
                                 1.0
                                                         40.56
                                                                           35.28
                                                                                      NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND
                                                  1. M:
                                      3.5 1120.0 20.11
           12.48
                                3.5
                                                                  23.78
                                                                           14.30
   200.
                    3
                                                                                      NO
```

DWASH= MEANS NO CALC MADE (CONC = 0.0)
DWASH=NO MEANS NO BUILDING DOWNWASH USED
DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED
DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED
DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

*** SUMMARY OF SCREEN MODEL RESULTS ***
*** SUMMARY OF SCREEN MODEL RESULTS ***

CALCULATION PROCEDURE	MAX CONC (UG/M**3)	DIST TO MAX (M)	TERRAIN HT (M)
SIMPLE TERRAIN	12.48	200.	0.

SCREEN-Condst.txt

09/18/12 16:41:51

*** SCREEN3 MODEL RUN *** *** VERSION DATED 96043 ***

GENELLE UNIT A1 AND B1 - Flare cond

SIMPLE TERRAIN INPUTS:

SOURCE TYPE **FLARE** EMISSION RATE (G/S) .125800 FLARE STACK HEIGHT (M) = 9.1440 TOT HEAT RLS (CAL/S) 581000. RECEPTOR HEIGHT (M) .0000 = URBAN/RURAL OPTION **RURAL** EFF RELEASE HEIGHT (M) = 11.7396 .0000 = BUILDING HEIGHT (M) .0000 MIN HORIZ BLDG DIM (M) = MAX HORIZ BLDG DIM (M) = .0000

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF 10.0 METERS WAS ENTERED.

BUOY. FLUX = 9.633 M^**4/S^**3 ; MOM. FLUX = 5.874 M^**4/S^**2 .

*** FULL METEOROLOGY ****

*** SCREEN AUTOMATED DISTANCES ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT (M)	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
(M) 1. 100. 200. 300. 400. 500. 600. 700. 800. 1000. 1100. 1200. 1300. 1400. 1500. 1600. 1700. 1800. 1900. 2000. 2100.	(UG/M**3)0000 .4314 3.112 3.106 2.836 2.732 2.550 2.409 2.304 2.171 2.049 1.924 1.819 1.722 1.634 1.561 1.490 1.421 1.449 1.498 1.540 1.566 1.586	STAB 1 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5	(M/S) 1.0 10.0 10.0 8.0 5.0 8.0 5.0 4.5 4.0 4.0 3.5 3.0 3.0 3.0 1.0 1.0 1.0 1.0	(M/S) 1.0 10.2 10.2 8.1 5.1 8.2 8.2 5.1 4.6 4.1 3.6 3.1 3.1 1.1 1.1 1.1	(M) 320.0 3200.0 3200.0 2560.0 1600.0 2560.0 1600.0 1440.0 1280.0 1120.0 960.0 960.0 960.0 960.0 10000.0 10000.0	HT (M) 127.58 23.27 23.27 26.15 34.80 26.04 26.04 34.61 37.15 40.33 44.42 49.86 49.86 49.86 49.86 49.86 49.86 73.81 73.81 73.81	Y (M) 1.46 12.63 23.85 34.54 45.13 36.38 42.91 49.62 55.96 62.31 68.61 74.76 80.98 87.02 93.19 99.14 105.06 110.94 88.76 93.05 97.33 101.59 105.83	z (M) 1.41 7.72 14.41 20.74 27.25 18.75 21.60 24.91 27.57 30.35 33.12 35.09 37.28 39.13 41.32 43.07 44.78 46.46 36.01 36.96 37.89 38.73 39.56	DWASH NO
2300. 2400. 2500. 2600.	1.602 1.614 1.622 1.627	5 5 5	1.0 1.0 1.0 1.0	$1.1 \\ 1.1 \\ 1.1$	10000.0 10000.0 10000.0 10000.0	73.81 73.81 73.81 73.81	110.06 114.27 118.47 122.66	40.38 41.18 41.97 42.76	NO NO NO NO

				SCREEN-	Condst.tx	t			
2700.	1.629	5	1.0	1.1	10000.0	73.81	126.83	43.53	NO
2800.	1.628	5	1.0	1.1	10000.0	73.81	130.99	44.29	NO
2900.	1.625	5	1.0	1.1	10000.0	73.81	135.13	45.05	NO
3000.	1.620	5	1.0	1.1	10000.0	73.81	139.27	45.79	NO
3500.	1.636	6	1.0	1.1	10000.0	62.70	106.65	32.43	NO
4000.	1.652	6	1.0	1.1	10000.0	62.70	120.06	34.10	NO
4500.	1.646	6	1.0	1.1	10000.0	62.70	133.30	35.68	NO
5000.	1.625	6	1.0	1.1	10000.0	62.70	146.40	37.18	NO
MAXIMUM	1-HR CONCE	ENTRATION	AT OR	BEYOND	1. M:				
231.	3.220	3	10.0	10.2	3200.0	23.27	27.28	16.40	NO

DWASH= MEANS NO CALC MADE (CONC = 0.0)
DWASH=NO MEANS NO BUILDING DOWNWASH USED
DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED
DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED
DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

CALCULATION	MAX CONC	DIST TO	TERRAIN
PROCEDURE	(UG/M**3)	MAX (M)	HT (M)
STMPLE TERRATN	3.220	231.	0.

```
*** SCREEN3 MODEL RUN ***
*** VERSION DATED 96043 ***
```

Genelle Unit A1 and B1 Flare PW

SIMPLE TERRAIN INPUTS: SOURCE TYPE **FLARE** .125800 EMISSION RATE (G/S) FLARE STACK HEIGHT (M) = 9.1440 TOT HEAT RLS (CAL/S) 63700.0 .0000 RECEPTOR HEIGHT (M) = URBAN/RURAL OPTION **RURAL** EFF RELEASE HEIGHT (M) = 10.0463

BUILDING HEIGHT (M) = .0000 MIN HORIZ BLDG DIM (M) = .0000 MAX HORIZ BLDG DIM (M) = .0000

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF $10.0\,$ METERS WAS ENTERED.

BUOY. FLUX = 1.056 M**4/S**3; MOM. FLUX = .644 M**4/S**2.

*** FULL METEOROLOGY ***

*** SCREEN AUTOMATED DISTANCES ***
*** SCREEN AUTOMATED DISTANCES ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	MIX HT	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
1. 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000. 1100. 1200. 1300. 1400. 1500. 1600. 1700. 2000. 2100. 2200. 2300. 2400. 2500.	.0000 17.25 19.70 18.10 17.19 16.19 14.80 13.92 13.03 12.00 10.96 10.01 9.165 8.415 7.829 8.057 8.214 8.310 8.355 8.358 8.357 8.228 8.116 7.994 7.591	113344444444466666666666666666666666666	1.0 2.0 2.0 1.5 2.0 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	320.0 640.0 640.0 480.0 640.0 480.0 320.0 320.0 320.0 320.0 320.0 320.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0 10000.0	32.36 21.20 24.92 24.92 24.92 24.92 32.35 32.35 32.35 32.35 32.35 32.35 32.35 32.35 32.35 32.35 32.35 32.35 32.35 32.35	.79 27.04 23.83 34.55 29.63 36.40 42.93 49.60 55.94 62.21 68.42 74.58 80.69 86.75 46.60 49.55 52.49 55.41 58.31 61.20 64.08 66.94 69.79 72.63 75.46 78.28 81.08	.70 14.31 14.39 20.77 15.60 18.78 21.63 24.87 27.53 30.15 32.72 34.71 36.65 38.53 18.69 19.40 20.79 21.47 22.13 22.78 23.34 23.88 24.94 25.96	NO N

```
SCREEN-PW
                          6
  2700.
           7.450
                                  1.0
                                          1.0 10000.0
                                                          35.14
                                                                    83.88
                                                                             26.46
                                                                                        NO
  2800.
           7.308
                                  1.0
                                          1.0 10000.0
                                                           35.14
                                                                  86.66
                                                                             26.95
                           6
                                                                                        NO
                                                           35.14
                                                                             27.44
                                                                    89.44
  2900.
           7.167
                           6
                                  1.0
                                          1.0 10000.0
                                                                                        NO
                                          1.0 10000.0

1.0 10000.0

1.0 10000.0

1.0 10000.0

1.0 10000.0
           7.025
  3000.
                                                           35.14
                                                                    92.20
                                                                             27.91
                           6
                                  1.0
                                                                                        NO
          6.319
5.707
  3500.
                           6
                                  1.0
                                                           35.14
                                                                   105.89
                                                                             29.85
                                                                                        NO
                                                           35.14
35.14
                                                                   119.38
132.70
  4000.
                                  1.0
                                                                              31.66
                           6
                                                                                        NO
  4500.
           5.180
                                  1.0
                                                                              33.35
                           6
                                                                                        NO
  5000.
           4.726
                                  1.0
                                                           35.14
                                                                   145.85
                                                                             34.95
                           6
                                                                                        NO
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND
                                                   1. M:
                                                 640.0 21.20 24.70
           19.74
                                       2.0
                                                                             14.89
                                                                                        NO
```

DWASH= MEANS NO CALC MADE (CONC = 0.0)
DWASH=NO MEANS NO BUILDING DOWNWASH USED
DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED
DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED
DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB

CALCULATION PROCEDURE	MAX CONC (UG/M**3)	DIST TO MAX (M)	TERRAIN HT (M)
SIMPLE TERRAIN	19.74	207.	0.

Page 2

```
*** SCREEN3 MODEL RUN ***
*** VERSION DATED 96043 ***
```

Genelle Unit A1 and B1 Flare SMSS

SIMPLE TERRAIN INPUTS:

SOURCE TYPE = FLARE
EMISSION RATE (G/S) = .125800
FLARE STACK HEIGHT (M) = 9.1440
TOT HEAT RLS (CAL/S) = .145992E+08
RECEPTOR HEIGHT (M) = .0000
URBAN/RURAL OPTION = RURAL
EFF RELEASE HEIGHT (M) = 21.2643
BUILDING HEIGHT (M) = .0000
MIN HORIZ BLDG DIM (M) = .0000
MAX HORIZ BLDG DIM (M) = .0000

THE REGULATORY (DEFAULT) MIXING HEIGHT OPTION WAS SELECTED. THE REGULATORY (DEFAULT) ANEMOMETER HEIGHT OF $10.0\,$ METERS WAS ENTERED.

BUOY. FLUX = 242.059 M**4/S**3; MOM. FLUX = 147.603 M**4/S**2.

*** FULL METEOROLOGY ***

*** SCREEN AUTOMATED DISTANCES ***
*** SCREEN AUTOMATED DISTANCES ***

*** TERRAIN HEIGHT OF 0. M ABOVE STACK BASE USED FOR FOLLOWING DISTANCES ***

DIST (M)	CONC (UG/M**3)	STAB	U10M (M/S)	USTK (M/S)	$MIX\ H^{\!\top}$	PLUME HT (M)	SIGMA Y (M)	SIGMA Z (M)	DWASH
1.	.0000	1	1.0	1.1	1011.4	1010.37	3.99	3.97	NO
100.	.4952E-02	6	1.0	1.5	10000.0	155.12	38.46	38.32	NO
200.	.6129E-02	5	1.0	1.3	10000.0	190.89	49.84	48.87	NO
300.	.6630E-02	5	1.0		10000.0	190.89	51.33	49.24	NO
400.	.7189E-02	5	1.0	1.3	10000.0	190.89	53.23	49.66	NO
500.	.1264E- 0 1	4	20.0	22.4	6400.0	64.75	37.02	19.97	NO
600.	.5618E-01	1	3.0	3.2	960.0	350.96	147.52	166.74	NO
700.	.9910E-01	1 1	3.0	3.2	960.0	350.96	168.05	224.84	NO
800.	. 1122	1	3.0	3.2		350.96	188.16	293.46	NO
900.	.1180	1	2.0	2.1	640.0	515.82	228.11	384.35	NO
1000.	.1420	1 1	1.5	1.6	681.7	680.67	275.71	488.30	NO
1100.	.1496	1	1.5	1.6	681.7	680.67	294.99	586.39	NO
1200.	.1488	1	1.5	1.6	681.7	680.67	309.11	693.66	NO
1300.	.1437	1	1.5	1.6	681.7	680.67	323.46	812.96	NO
1400.	.1388	4	20.0	22.4	6400.0	64.75	93.50	42.02	NO
1500.	.1374	4	20.0 20.0	22.4	6400.0	64.75	99.44	43.74	NO NO
1600. 1700.	.1353 .1327	4 4	20.0	22.4 22.4	6400.0 6400.0	64.75 64.75	105.34 111.21	45.43 47.09	NO
1800.	.1296	4	20.0	22.4	6400.0	64.75	117.04	48.71	NO
1900.	.1264	4	20.0	22.4	6400.0	64.75	122.85	50.31	NO
2000.	.1230	4	20.0	22.4	6400.0	64.75	128.63	51.89	NO
2100.	.1195	4	20.0	22.4	6400.0	64.75	134.39	53.43	NO
2200.	.1160	4	20.0	22.4	6400.0	64.75	140.12	54.96	NO
2300.	.1125	4	20.0	22.4	6400.0	64.75	145.82	56.46	NO
2400.	.1091	4	20.0	22.4	6400.0	64.75	151.50	57.95	NO
2500	.1057	4	20.0	22.4	6400.0	64.75	157.15	59.41	NO
2600.	.1025	4	20.0	22.4	6400.0	64.75	162.79	60.86	NO
				Pā	ige 1				

```
SCREEN-SMSS
  2700.
         .9930E-01
                           20.0
                                  22.4 6400.0
                                                64.75 168.40
                                                                62.28
                                                                         NO
  2800.
         .9623E-01
                      4
                           20.0
                                  22.4 6400.0
                                               64.75
                                                       173.99
                                                                63.69
                                                                         NO
                                                       179.56
                      4
                                                 64.75
  2900.
         .9327E-01
                           20.0
                                  22.4 6400.0
                                                                65.08
                                                                         NO
  3000.
         .9140E-01
                      4
                                  16.8
                                       4800.0
                                                 81.78
                                                       185.49
                                                                67.49
                           15.0
                                                                         NO
         .8207E-01
  3500.
                      4
                           15.0
                                  16.8
                                       4800.0
                                                 81.78
                                                       212.93
                                                                73.65
                                                                         NO
                                                        559.96
  4000.
         .7514E-01
                      2
                            1.5
                                        681.7
                                                                534.50
                                   1.6
                                                680.67
                                                                         NO
  4500.
         .7244E-01
                      2
5
                                         681.7
                                                       614.42
                            1.5
                                   1.6
                                                680.67
                                                                599.56
                                                                         NO
                                   3.9 10000.0
         .7290E-01
  5000.
                            3.0
                                               138.88
                                                       221.43
                                                                65.06
                                                                         NO
                                         1. M:
681.7 680.67 299.76 621.50
MAXIMUM 1-HR CONCENTRATION AT OR BEYOND
        .1502
  1135.
                                  1.6
                                                                         NO
 DWASH=
        MEANS NO CALC MADE (CONC = 0.0)
 DWASH=NO MEANS NO BUILDING DOWNWASH USED
 DWASH=HS MEANS HUBER-SNYDER DOWNWASH USED
 DWASH=SS MEANS SCHULMAN-SCIRE DOWNWASH USED
 DWASH=NA MEANS DOWNWASH NOT APPLICABLE, X<3*LB
     **********
```

CALCULATION	MAX CONC	DIST TO	TERRAIN
PROCEDURE	(UG/M**3)	MAX (M)	HT (M)
STMPLE TERRATN	.1502	1135.	0.

Oil and Gas Standard Permit and Permit By Rule Refined-Screening Modeling Guidelines

The modeling tables in the Oil and Gas Standard Permit and Permit by Rule (PBR) are only one tool the applicant may use to demonstrate emissions from Oil and Gas Site (OGS) located in the Barnett Shale are acceptable under the Standard Permit and PBR. The modeling performed to create the modeling tables demonstrates the Standard Permit and PBR are protective anywhere in the Barnett Shale. In order to make the demonstration, the modeling is based on reasonably conservative assumptions and modeling techniques. If the modeling tables are too conservative for a specific OGS, the applicant may use a more refined screening modeling approach to demonstrate acceptable emissions from an OGS under the Standard Permit and PBR. The following information provides the requirements and guidance if an applicant chooses to conduct the refined screening approach. The applicant should follow the approach exactly and should not modify the approach on a case-by-case basis. However, the commission could modify the modeling guidance to resolve technical issues, clarify instructions, or allow the use of other refined dispersion models.

There are two refined screening options for demonstrating acceptable emission impacts. The first is a screening approach using the SCREEN3 model and the second is a refined screening approach using Industrial Source Complex (ISC) model. It is possible, and acceptable, that some sites may utilize a combination of SCREEN3 and ISC when completing the impacts review.

SCREEN3 Model Setup Guidelines

The information contained in this section will provide guidance for applicants utilizing SCREEN3 in the protectiveness reviews for the Oil and Gas PBR and Standard Permit. If any of the conditions outlined in this guidance cannot be met, then this approach cannot be used.

Control Options

- The Regulatory default option must be selected.
- The Flat terrain choice must be used.
- Rural or urban dispersion options may be used based on the land use in the vicinity of the sources to be permitted.
- A land use analysis must be conducted to determine the majority land-use type within 3 kilometers (km) of the sources to be permitted.
- If the land-use designation is clear (about 70 percent or more of the total land-use is either urban or rural), then no further refinement is required and the model should be run with the appropriate land-use designation.
- If the land-use designation is not clear, the model should be run twice, once with each option and the higher of the two predicted concentrations should be reported.

Source Options

- Emissions can be represented as either point sources, point source using pseudo point parameters, area source, or as a flare.
- Use a point source with pseudo-point parameters for individual fugitive sources and for any sources that do not release to the atmosphere through standard stacks (such as stacks or vents with rain caps, horizontal releases).

- Use area source to characterize emissions from fugitive sources and for any sources that do not release to the atmosphere through standard stacks. The area and release height must represent sources or activities that occur at the same time and height. The ratio of length to width for the area source cannot be greater than 10:1. Multiple area sources can be used as applicable to meet area and release height restrictions.
- Flares may be modeled using the flare source type in SCREEN3 or by calculating the effective stack diameter and using the parameters listed in the ISC model setup guideline. The SCREEN3 flare option assumes an effective stack gas exit velocity (vs) of 20 m/s and an effective stack gas exit temperature (Ts) of 1,273 Kelvin, and calculates an effective stack diameter based on the heat release rate. Enclosed vapor combustion units should not be modeled with the preceding parameters but instead with stack parameters that reflect the physical characteristics of the unit.

Meteorology

 The SCREEN3 model defaults of full meteorology, 10-meter anemometer height, and regulatory mixing height are required.

Receptors

- Model receptors should be placed to meet the definitions listed in 30 TAC §106.352(b)(2), 30 TAC §106.352(k), and sections (b)(2) and (k) of the standard permit.
- The distance to the nearest receptor should be used to demonstrate compliance for the health effects analysis.
- The starting receptor for the state property line and NAAQS analyses should be placed at the nearest property line. The ending receptor should be located at a 1/4 mile, 1/2 mile, or 1 mile from a project for PBR level 1, PBR Level 2, or the standard permit, respectively.

Downwash

Downwash is generally not applicable for OGS located in rural areas. Downwash
may be appropriate for OGS that could be affected by large buildings located in urban
areas. Generally, small tanks, storage sheds, and engines are not large enough to
cause downwash effects and should not be considered in the analysis.

Output

• The maximum predicted concentration must be used to compare against the applicable ESL, NAAQS, or state ambient air standard.

• The following conversion factors can be used to convert 1-hour concentrations from SCREEN3 to averaging times greater than 1-hour:

Averaging Time	Multiplying Factor
3 hour	0.9
24 hour	0.4
Annual	0.08

ISC Model Setup Guidelines

The information contained in this section will provide guidance for applicants utilizing ISC in the protectiveness reviews for the Oil and Gas PBR and Standard Permits. The latest version of ISC-Prime must be used in the analysis. If any of the conditions outlined in this guidance cannot be met, then this approach cannot be used.

Control Options

- The Regulatory default option must be selected.
- The Flat terrain choice must be used.
- Plume depletion and deposition options are not allowed
- Rural or urban dispersion options may be used based on the land use in the vicinity of the sources to be permitted.
- A land use analysis must be conducted to determine the majority land-use type within 3 km of the sources to be permitted.
- If the land-use designation is clear (about 70 percent or more of the total land-use is either urban or rural), then no further refinement is required and the model should be run with the appropriate land-use designation.
- If the land-use designation is not clear, the model should be run twice, once with each option and the higher of the two predicted concentrations should be reported.

Source Options

- Emissions can be represented as either point sources, point source using pseudo point parameters, area source, or as a flare.
- Use a point source with pseudo-point parameters for individual fugitive sources and for any sources that do not release to the atmosphere through standard stacks (such as stacks or vents with rain caps, horizontal releases).
- Use area source to characterize emissions from fugitive sources and for any sources that do not release to the atmosphere through standard stacks. The area and release height must represent sources or activities that occur at the same time and height. The ratio of length to width for the area source cannot be greater than 10:1. Multiple area sources can be used as applicable to meet area and release height restrictions.

• Flares should be modeled with the following parameters: effective stack exit velocity of 20 meters per second; effective stack exit temperature of 1273 Kelvin; actual height of the flare tip. The effective stack diameter (in meters) should be calculated using the following equation: D = √(10-6qn) and qn = q(1 - 0.048√MW) Where: q = gross heat release in cal/sec; qn = net heat release in cal/sec; and MW = weighted (by volume) average molecular weight of the compound being flared.

Meteorology

- The ADMT prepared meteorological data sets available at www.tceq.state.tx.us/permitting/air/modeling/admtmet.html must be used in the modeling analysis.
- The following table lists the meteorological data sets that should be used for projects located in the corresponding County

Counties	Surface Data	Upper-air Data
Cooke, Dallas, Denton, Ellis, Hood, Johnson, Parker, Somervell, Tarrant, Wise	Dallas-Fort Worth	Stephenville
Archer, Clay, Montague	Wichita Falls	Stephenville
Bosque, Coryell, Hill	Waco	Stephenville
Comanche, Hamilton	San Angelo	Stephenville
Eastland, Erath, Jack, Palo Pinto, Shackelford, Stephens	Abilene	Stephenville

- The required year is 1988 when using one year of meteorology data,
- Only one year of data is required. However, the entire five year data set may be used for NAAQS pollutants.
- The actual anemometer height must be used for each airport location. Anemometer heights can be found at the following URL: www.tceq.state.tx.us/assets/public/permitting/air/memos/anemom96.pdf

Receptors

- Model receptors should be placed to meet the definitions listed in 30 TAC §106.352(b)(2), 30 TAC §106.352(k), and sections (b)(2) and (k) of the standard permit.
- Model receptors should be placed at all locations defined as a receptor within a 1/4 mile, 1/2 mile, or 1 mile from a project for PBR level 1, PBR Level 2, or the standard permit, respectively, to demonstrate compliance with the health effects analysis.
- In addition to meeting the requirements in 30 TAC §106.352(b)(2), 30 TAC §106.352(k), and sections (b)(2) and (k) of the standard permit, the following

receptor grid design should be used when conducting a NAAQS or state property line analysis:

PBR Level 1

• Tight receptors - receptors beginning at the property line and spaced 50 feet apart extending out to a distance of 1/4 mile (1320 feet) from the property line

PBR Level 2

- Tight receptors receptors beginning at the property line and spaced 50 feet apart extending out to a distance of 1/4 mile (1320 feet) from the property line
- Fine receptors receptors spaced 300 feet apart beginning at 1/4 mile (1320 feet) from the property line and extending out to a distance of 1/2 mile (2640 feet) from the property line

Standard Permit

- Tight receptors receptors beginning at the property line and spaced 50 feet apart extending out to a distance of 1/4 mile (1320 feet) from the property line
- Fine receptors receptors spaced 300 feet apart beginning at 1/4 mile (1320 feet) from the property line and extending out to a distance of 1/2 mile (2640 feet) from the property line
- Medium receptors receptors spaced 1500 feet apart beginning at 1/2 mile (2640 feet) from the property line and extending out to a distance of extending out to a distance of 1 mile (5280 feet)

Downwash

- Downwash is generally not applicable for OGS located in rural areas. Downwash may be appropriate for OGS that could be affected by large buildings located in urban areas. Generally, small tanks, storage sheds, and engines are not large enough to cause downwash effects and should not be considered in the analysis.
- The latest version of BPIP-Prime should be used to calculate downwash parameters if downwash is appropriate.

Coordinate System

- Enter receptor locations, source locations, and building location (if necessary) in UTM coordinates
- UTM coordinates in datum NAD27 or NAD83 must be used. Make certain that all of the coordinates originated in, or are converted to, the same horizontal datum.
 Applicable UTM zone for the Barnett Shale is zone 14 (between 102 and 96 degrees longitude).
- Coordinate systems based on plant coordinates, applicant-developed coordinate systems, or polar grids will not be accepted.

Output

- The maximum predicted concentration must be used to compare against the applicable ESL, NAAQS, or state ambient air standard when using one year of meteorological data.
- The *high*, second high may be used when modeling with 5 years of meteorology data for the SO₂ 3-hr, SO₂ 24-hr, SO₂ annual, and NO₂ annual NAAQS.
- The form of the standard may be used be used when modeling with 5 years of meteorology data for the SO₂ and NO₂ 1-hr NAAQS.
- The modeling form of the standard for the 1-hr NO₂ NAAQS is based on the 5-year average of the annual 98th percentile of the daily maximum 1-hour concentrations.
- The modeling form of the standard for the 1-hr SO₂ is based on the 5-year average of the annual 99th percentile of the daily maximum 1-hour concentrations.

Review Type Guidelines

The following section contains the required procedures necessary to complete a health effects, NAAQS, and state property line evaluations. The applicant should follow the steps exactly and should not modify the approach on a case-by-case basis. However, the commission could modify the guidance to resolve technical issues, clarify instructions, or allow the use of more refined models.

In addition to following the approaches below, the evaluations must meet the requirements listed in 30 TAC §106.352(k) and section (k) of the standard permit, as appropriate.

Health Effects Analysis

- Compliance with the hourly ESL for benzene and annual ESL for benzene must be demonstrated at receptors within 1/4 mile, 1/2 mile, or 1 mile of a project for PBR Level 1, PBR Level 2, or the standard permit, respectively
- Model all new and modified sources -- the project.
- If the project's air contaminant maximum predicted concentration is equal to or less than 10% of the appropriate ESL, no further review is required.
- If a project's air contaminant maximum predicted concentration is greater than 10% of the appropriate ESL, compare the project's air contaminant maximum predicted concentration combined with project increases for that contaminant over a 60-month period to 25% of the appropriate ESL. If the resulting concentration is less than 25% of the appropriate ESL, no further review is required.
- A site wide analysis, including all sources emitting the regulated contaminant, must be conducted if the above requirements are not met. Multiple scenarios may be necessary to represent sources that may not operate simultaneously.
- All sources must be modeled at the maximum allowable emission rate.
- The maximum predicted concentration at each receptor should be compared to the ESL and included in the modeling report.

State Property Line Analysis

- Compliance with the state ambient air standard for SO₂ and H₂S must be demonstrated at any property line within 1/4 mile, 1/2 mile, or 1 mile of a project for PBR level 1, PBR Level 2, or the standard permit, respectively
- Model all new and modified sources-- the project.
- Compare the maximum predicted concentration from the project to the appropriate de minimis level. Compliance with the state property line standards is demonstrated if the maximum predicted concentration from the project is less than or equal to de minimis listed in the following table:

Pollutant	Averaging Time	Location	De Minimis (μg/m³)
SO ₂	1-hr	All locations	20
H_2S	1-hr	If property is residential, recreational, business, or commercial	2
H_2S	1-hr	If property is other than residential, recreational, business, or commercial	3

- If the maximum predicted concentration from the project is greater than de minimis, a site wide analysis must be conducted.
- Model the allowable emission rate of all sources on site that emit the regulated pollutant.
- Compliance with the state property line standard is demonstrated if the maximum predicted site-wide concentration is less than or equal to the state property line standards listed in the following table:

Pollutant	Averaging Time	Location	State Property Line Standard (µg/m³)
SO_2	1-hr	All Locations	1021
H ₂ S	1-hr	If property is residential, recreational, business, or commercial	108
H ₂ S	1-hr	If property is other than residential, recreational, business, or commercial	162

NAAQS Analysis

- Compliance with federal ambient air standards for NO₂ and SO₂ must be demonstrated at any property line within 1/4 mile, 1/2 mile, or 1 mile of a project for PBR Level 1, PBR Level 2, or the standard permit, respectively
- Model all new and modified sources-- the project.
- Compare the maximum predicted concentration from the project to the appropriate de minimis level. Compliance with the NAAQS is demonstrated if the maximum predicted concentration from the project is less than or equal to the de minimis level listed in the following table:

Pollutant	Averaging Time	De Minimis (μg/m³)
SO_2	1-hr	7.8
SO ₂	3-hr	25
SO ₂	24-hr	5
SO ₂	Annual	1
NO ₂	1-hr	7.5
NO ₂	Annual	1

- If the maximum predicted concentration from the project is greater than de minimis, a site wide analysis must be conducted.
- Model the allowable emission rate of all sources on site that emit the regulated pollutant
- The maximum predicted concentration must be used when modeling with one year of meteorology data.
- The *high*, second high may be used when modeling with 5 years of meteorology data for the SO₂ 3-hr, SO₂ 24-hr, SO₂ annual, and NO₂ annual NAAQS.
- The form of the standard may be used be used when modeling with 5 years of meteorology data for the SO₂ and NO₂ 1-hr NAAQS.

 Add a background concentration to the predicted site wide concentration and compare the total concentration to the NAAQS. Compliance with the NAAQS is demonstrated if the total concentration is less than NAAQS listed in the following table:

Pollutant	Averaging Time	NAAQS (μg/m³)
SO_2	1-hr	196
SO_2	3-hr	1300
SO ₂	24-hr	365
SO ₂	Annual	80
NO ₂	1-hr	188
NO ₂	Annual	100

- Screening background concentration values can be found at www.tceq.texas.gov/permitting/air/memos/interim guidance naaqs.html
- If the screening background concentration values are too conservative, contact the Air Dispersion Modeling Team at 512-239-1250 for further guidance. The applicant should be prepared to present and discuss alternative background concentrations.

Streamlining Techniques

The following section contains approaches that may be used to streamline the modeling required to demonstrate compliance with the health effects, NAAQS, or state property line analysis. The streamlining techniques are **NOT** required, but may be used to streamline the analyses.

Controlling Concentrations

Short-term standards are usually the controlling concentrations; that is, if the standard is met for the shortest time period, standards for longer averaging periods will also be met. Therefore, if the predicted concentrations from the maximum 1-hour emissions for a NAAQS or applicable state standard are at or lower than the concentrations from a longer averaging period, the demonstration is complete. For example, if the predicted 1-hour SO_2 concentration is $150~\mu g/m^3$, the demonstration for all SO_2 NAAQS and state standards except the annual NAAQS is complete. However, the screening conversion factor of 0.08 can be used to convert the hourly concentration to an annual concentration, and in this case, the annual NAAQS will not be exceeded. Document the use of this technique in the modeling report.

Collocation of Emission Points

Collocating stacks may be appropriate for both screening and refined analyses if the individual emission points emit the same pollutant(s); have stack heights, volumetric flow rates, or stack gas exit temperatures that do not differ by more than about 20 percent; and are within about 100 meters of each other.

- Use the following equation to determine the worst-case stack: $M = (h_s V T_s)/Q$
- Where:
 - M = a parameter that accounts for the relative influence of stack height, plume rise, and emission rate on concentrations;
 - h_s = the physical stack height in meters;
 - $V = (\pi/4)d^2v_s$ = the stack gas flow rate in cubic meters per second.
 - \bullet $\Pi = pi$
 - d = inside stack diameter in meters;
 - v_s = stack gas exit velocity in meters per second;
 - T_s = the stack gas exit temperature in Kelvin;
 - Q = pollutant emission rate in grams per second.
- The stack that has the lowest value of M is used as a representative stack.
- The sum of the emissions from all stacks is assumed to be emitted from the representative stack.

Generic Modeling Approach

This technique uses a unit emission rate (1 pound per hour) to determine if the maximum contribution from each permitted source when added together, independent of time and space, could exceed a standard or ESL. This is a conservative procedure since the maximum concentration from all sources modeled concurrently cannot be more than the sum of the maximum concentration from each source modeled separately.

- Determine a generic impact for each source by modeling each source with a unit emission rate of 1 pound per hour; the source's actual location; and the source's proposed stack parameters represented in the permit application.
- In ISC this is done by setting up a separate source group for each source.
- The SCREEN3 model can also be used for this demonstration with a separate SCREEN3 model run for each source.
- Multiply the predicted generic impact by the proposed pollutant specific emission rate for each source to calculate a maximum predicted concentration for each source.
- Sum the maximum predicted concentration for each source to get a total predicted concentration for each pollutant.
- The sum of the maximum concentrations (for each pollutant, independent of time and space) is then compared with the threshold of concern for each pollutant.

Reporting Requirements

Once the modeling exercise is complete, the modeling approach and results should be summarized in a modeling report. The modeling report should be sent to the TCEQ permit reviewer and include a CD with all modeling input files, plot files, output files and all other files of supporting information used in the modeling demonstration.

Interim 1-Hour NO₂ NAAQS Guidance for Engines Authorized under §106.512

Disclaimer: Any actions may be affected by EPA written guidance.

Background

EPA has established a new 1-hour National Ambient Air Quality Standard (NAAQS) for NO_2 at 188 micrograms per cubic meter ($\mu g/m^3$) that became effective on Monday, April 12, 2010. Any project application that has <u>new NOx/NO₂</u> emissions <u>or</u> any increases (regardless of decreases also proposed in the project) must demonstrate compliance with both the 1-hour and annual ($100 \mu g/m^3$) standards. An exception would be if the project is an identical replacement at the same location with the same NO_2 emissions and dispersion characteristics.

The oil and gas projects for the following registrations must evaluate compliance with this new hourly standard, because their specific requirements discuss a demonstration of compliance with standards:

- §106.512 Engines and Turbines (not any associated §106.352 small combustion devices or §106.492 Flares at this time)
- §116.620 Oil and Gas Production Standard Permit (only with engines which are using 106.512 per the standard permit requirements)

Compliance Demonstration

If a 1-hour NO₂ NAAQS demonstration for the project needs to be performed, it shall be done using method (A), (B), or (C) of 30 TAC 106.512 Condition 6. If method (A) is used, modeling may be done using one of the following nitrogen dioxide (NO₂)/NOx ratios:

- a default value of 0.75, or
- the appropriate value given in Figure 1 of 30 TAC 106.512(6)(A), or
- a ratio derived from actual test data.

If the applicant chooses to use a ratio derived from test data, appropriate documentation shall be provided to demonstrate its validity.

Modeling Guidance

The applicant may choose to do modeling using SCREEN3 or ISC3-PRIME. Regardless of the method chosen, the applicant should:

- 1. Model the project increase and compare the result to the de minimis value. The agency will use an interim de minimis value of $10 \mu g/m^3$. If the project increase is less than or equal to the de minimis value, no further review is needed.
- 2. If the project increase exceeds the de minimis value of $10 \mu g/m^3$, then add the modeled concentration from the project increase to a conservative background value for the appropriate region/county (contact agency staff to obtain background values) and compare the sum to the hourly standard of $188 \mu g/m^3$. Applicants may contact the Air Dispersion Modeling Team at 512-239-1250 to determine if a more representative background value is available, based on the location of the facility.
- 3. If doing SCREEN3 modeling, either of the following approaches may be employed:
- Combine all facilities together at the closest property line using the facility with the "worst-case" dispersion parameters and run the model using a maximum hourly emission rate to obtain the combined 1-hour concentration; or
- Run the model with "overlapping" receptor grids -- one run for each facility using the maximum hourly emission rate. Sum the predicted concentrations at and beyond the property line and determine the maximum concentration.
- 4. If the applicant decides to do full scale dispersion modeling, the following procedure should be followed:
- The applicant will have to call the Air Dispersion Modeling Team 512-239-1250 to schedule a pre-modeling meeting. The modeling guidelines checklist can be found at http://www.tceq.state.tx.us/assets/public/permitting/air/Guidance/NewSourceReview/gd_chk.pdf
- During the pre-modeling meeting, all NOx emissions associated with the project will be discussed and a Table 1A will need to be provided.
- After the checklist is approved, the applicant can then submit the modeling results to Rule Registrations Section reviewer and the Air Dispersion Modeling Team.
- Upon acceptance of the modeling results, the applicant may submit (for PBR using Form PI-7-CERT and for Standard Permits Form PI-1S) to **certify** the project and the modeling results.

Options for Applicants

If an applicant cannot meet the 1-hour standard using one of the methods described above, they have the following options (in order of preference):

1. The applicant can review and revise as appropriate their inputs, emission factors, etc. Example: If an applicant originally used 2.0 g as their NOx factor but later discovered

they could use 0.5 g and revise their calculations to meet the new standard, then they will need to **certify**. An example of an appropriate use of this option would be site-specific testing which demonstrated a lower emission factor than the vendor-supplied value.

2. The applicant can reduce or eliminate the NOx increase by installing controls, increasing stack height, leasing more land to increase the property line distance, etc.

Interim 1-Hour Nitrogen Dioxide (NO₂) NAAQS Implementation Guidance July 22, 2010

The New 1-Hour NO₂ National Ambient Air Quality Standards (NAAQS)

The U.S. Environmental Protection Agency (EPA) promulgated a new 1-hour National Ambient Air Quality Standard (NAAQS) for NO_2 (February 9, 2010) that became effective April 12, 2010. The 1-hour NO_2 standard is 100 parts per billion (ppb) or 188 micrograms per cubic meter (μ g/m³) at 25° Celsius (C) and 760 millimeters of mercury (mm Hg). EPA retained the annual standard (100 μ g/m³, 53 ppb) and annual increment (25 μ g/m³). EPA is currently conducting a separate review of the secondary NO_2 NAAQS jointly with a review of the secondary NO_2 NAAQS.

The EPA retained the annual primary and secondary standards and did not propose a change to the significant emission rate (SER) or significant monitoring concentration (SMC) and did not propose a 1-hour significant impact limit (SIL). The EPA is reviewing secondary standards and plans to propose secondary standards for NO₂ in July 2011.

In addition, in the notice EPA explains

- the state's responsibility to develop and implement a state implementation plan (SIP) that contains state measures necessary to achieve the air quality standards in each area (page 6521) and
- that minor new source review (NSR) programs must meet the statutory requirements in section 110(a)(2)(C) of the federal clean air act (CAA) which requires * * * regulation of the modification and construction of any stationary source * * * as necessary to assure that the [NAAQS] are achieved (page 6525).

TCEQ's General Air Permitting Authority

The TCEQ implements the NSR program through statutory authority for air permitting contained in Chapter 382 of the Texas Health and Safety Code -- the Texas Clean Air Act (TCAA). The current SIP and SIP-approved portions of Title 30, Texas Administrative Code (TAC) Chapters 106 and 116 implement the requirements of the TCAA and provide the basis to regulate 1-hour NO₂ for major and minor sources.²

1-Hour NO₂ July 22, 2010

Page 1

¹ 75Federal Register 6474, Primary National Ambient Air Quality Standards for Nitrogen Dioxide, Final Rule, February 9, 2010.

² 30 TAC Section 116.110 requires an authorization to construct or modify a facility. Section 116.111 requires an applicant to demonstrate control technology and protectiveness before a permit can be issued. Computer modeling may be required as part of the demonstration. These rules apply to minor

In addition, the TCAA directs the commission to comply with the federal Clean Air Act (FCAA). The FCAA requires the state to develop a SIP that includes an air permit program. The program must regulate the construction and modification of any stationary source to assure the NAAQS are achieved; bring nonattainment areas into and maintain attainment of the NAAQS; and to prevent significant deterioration of air quality. The EPA has developed a NSR program that encompasses the statutory and regulatory programs that regulate the construction and modification of stationary sources as provided under FCAA section 110(a)(2)(C), FCAA Title I, parts C and D, and 40 Code of Federal Regulations (CFR) Sections 51.160 through 51.166.

- As of April 12, 2010, applicants must demonstrate compliance with the 1-hour NAAQS.
 - Applies to new and modified facilities with increases of nitrogen oxide (NOx)/NO₂.Applies to major and minor sources.
 - Any permit and standard permit/PBR registration under technical review that specifically requires a NAAQS or NO₂ NAAQS compliance demonstration³ must demonstrate compliance with the 1-hour NO₂ standard.
 - The Air Permits Division (APD) will evaluate all standard permits and permits by rule (PBRs) to determine whether an hourly NO₂ NAAQS analysis would be appropriate and needed to confirm claims or amend these permitting tiers.
- Major source applicability is the first part of the permit technical review. The significance level remains at 40 tons per year.
 - If projects "net out" of major NSR review, minor NSR review is still required for facilities with new or increased emissions.

EPA Guidance

On June 29, 2010, EPA released guidance concerning implementation of the 1-hour NO₂ NAAQS for the NSR PSD program.⁴ While the EPA focuses its discussion on the

and major sources. Additional requirements are contained in Sections 116.150-151 and 116.160-163 for major sources and major modifications. At this time: 30 TAC §106.512. Stationary Engines and Turbines (not any associated §106.352 small combustion devices or §106.492 Flares at this time); 30 TAC §116.617 State Pollution Control Project Standard Permit; 30 TAC §116.620 Installation and/Modification of Oil and Gas Facilities (only with engines which are using §106.512 per the standard permit requirements).

1-Hour NO₂ July 22, 2010

Page 2

³ At this time: 30 TAC §106.512.Stationary Engines and Turbines (not any associated §106.352 small combustion devices or §106.492 Flares at this time); 30 TAC §116.617 State Pollution Control Project Standard Permit; 30 TAC §116.620 Installation and/Modification of Oil and Gas Facilities (only with engines which are using §106.512 per the standard permit requirements).

⁴ http://www.epa.gov/nsr/documents/20100629no2guidance.pdf

prevention of significant deterioration (PSD) portion of the NSR program, the TCEQ continues to base implementation of the state minor source program on EPA's major source guidance as applicable.

- Stephen D. Page Memorandum, June 29, 2010, Guidance Concerning the Implementation of the 1-hour NO₂ NAAQS for the Prevention of Significant Deterioration Program (Page Memo).
- Anna Marie Wood Memorandum, June 28, 2010, General Guidance for Implementing the 1-hour NO₂ National Ambient Air Quality Standard in Prevention of Significant Deterioration Permits, Including an Interim 1-hour NO₂ Significant Impact Level (Wood Memo.)
- Tyler Fox Memorandum, June 28, 2010, Applicability of Appendix W Modeling Guidance for the 1-hour NO₂ National Ambient Air Quality Standard (Fox Memo).

In addition, on July 15, 2010, EPA conducted a webinar that discussed the guidance contained in the memorandum and answered questions e-mailed from participants.⁵

Air Permits Division (APD) Interpretation of EPA Guidance

The APD will apply the EPA guidance on a case-by-case basis. There are many areas that require technical judgment and coordination with EPA. Following are some general comments permit reviewers and applicants should be aware of concerning EPA's interim guidance and APD's interim implementation:

Page Memo

Pages 1-2. EPA focuses the discussion on PSD and does not directly refer to minor NSR. To meet TCAA and FCAA requirements and ensure consistency with the current permitting process, the APD continues to consider EPA's major source guidance as applicable to implement the state minor NSR program.

Wood Memo

Page 3. Introduction. The EPA explains that as of April 12, 2010, applicants must demonstrate that proposed emissions increase will not cause or contribute to a NAAQS violation. Applicants and reviewers must evaluate new and increased NOx/ NO₂

⁵ http://www.epa.gov/apti/webinars/WEBINAR-NO2%20Policy%20Guidance 7-15-2010.pdf and http://www.epa.gov/apti/webinars/WEBINAR-Part2 NO2 ModelingGuidance 15July2010.pdf

¹⁻Hour NO₂ July 22, 2010

emissions associated with a project to satisfy this requirement. Air dispersion modeling may be required as applicable to support the evaluation. Modeling procedures for major or minor projects must be preapproved through development and review of a modeling checklist or protocol with the applicant, permit reviewer and modeling staff. Applicants must send major source (PSD) modeling protocols to EPA Region 6 as well.

Page 5. Air Quality Based Emission Limitations. The TCEQ's three-tier best available control technology (BACT) process is equivalent to EPA's top-down process. APD is currently updating pollution control guidance and will provide a draft to stakeholders for comment.

Pages 5-6.

- Demonstrating Compliance...Cause or Contribute. APD will use the EPA 1-hour interim NO₂ SIL to determine when a project would cause or contribute to a modeled NAAQS violation. However, if the model predicts a violation but the project is not significant, the APD may request that the applicant provide the sources that were predicted to cause the violation if this information was not included in the modeling output.
- Mitigating Violations with Air Quality "Offsets." While EPA refers to "offsets" the emission reductions required for PSD in 40 CFR 165(b)(3) are not the same as the mandatory offsets required for nonattainment review. See 30 TAC Section 116.161. Applicants can mitigate modeled adverse impacts by such actions as direct emissions reductions, emission reductions through enhanced control, enforceable permit conditions, and increasing stack height according to Good Engineering Practice.

Pages 10-11. Significant Emissions Rate (SER). The SER is used to determine applicability of major NSR to new or modified sources of NO₂. While projects can net out of major NSR, they must be evaluated under TCEQ rules for minor NSR. This would include a BACT and impacts evaluation.

Pages 11-13. Interim 1-hour SIL (also referred to as de minimis impact). The APD will use the EPA interim 1-hour NO₂ SIL of 4 ppb. This value equates to 7.5 μ g/m³ at 25° C and 760 mm Hg. Before EPA provided its SIL, the APD advised applicants to use the SIL developed by NESCAUM (Northeast States for Coordinated Air Use Management). However, any modeling already submitted or in progress based on that SIL (10 μ g/m³) will not need to be reaccomplished. For the public record applicants can refer to EPA's and APD's guidance in their air quality analysis to justify the use of an interim SIL.

Page 12. Use of the Interim SIL. Results from the SCREEN3 model may be used for major and minor projects. For minor NSR, the applicant may compare the interim de minimis to

- the highest modeled 1-hour NO₂ concentration predicted across all receptors based on 1-year of APD designated meteorological dataset for the project, or
- the highest of the 5-year average of the maximum modeled 1-hour NO₂ concentration predicted each year at each receptor based on the APD designated 5-year meteorological dataset for the project.

If the project is less than or equal to the de minimis, no further review is needed. If the project concentrations exceed the de minimis value, a site-wide NO₂ NAAQS analysis must be performed.

Fox Memo

Page 14. Introduction. EPA provides general guidance in 40 CFR Part 51 Appendix W on how to conduct an air quality analysis. In the Fox memo, EPA clarifies guidance contained in Appendix W that does not specifically address procedures for the 1-hour NO₂ NAAQS, and provides selected interim implementation guidance. In general

- For major NSR, follow EPA guidance contained in the referenced EPA memoranda as annotated by APD.
- Do not back calculate from an annual concentration to obtain a 1-hour concentration.
- Design the size of the receptor grid to be large enough to show that concentrations are decreasing from the site.
- Include nearby off-property emissions in the inventory, as applicable. Obtain a short-term 1-hour NO₂ retrieval from the PSDB to a maximum distance of 50 kilometers from the site. For PSD, include any technically complete (sent to 2nd Public Notice) or recently issued permits, as applicable.
- Provide air quality data in the area near the proposed facility. The air quality is the ambient background concentration that is added to the maximum predicted

concentration. It is the applicant's burden to determine the air quality data to be used in the air quality analysis and demonstrate its representativeness.

- The division will provide interim background concentrations for screening purposes. Applicants should contact the modeling staff for assistance regarding refined background concentrations.
- Use conservative screening background concentrations for projects that exceed the de minimis concentration.
 - For PBR / standard permit demonstrations, as applicable. Add the screening background concentration for the county/region to the predicted concentration from the project. If the project plus background is less than or equal to 188 μg/m³, the demonstration is complete.
 - For case-by-case minor source permitting. Follow the procedure for PBR / standard permits with prior approval. The applicant must demonstrate that the procedure is appropriate based on factors such as
 - Total NO₂ emissions at the site
 - Facility location and dispersion parameters
 - Previous approved modeling results
- Round concentrations to be compared to the NAAQS⁶ to the nearest whole number
 or 1 ppb (decimals 0.5 and greater are rounded up to the nearest whole number, and
 any decimal lower than 0.5 is rounded down to the nearest whole number).
- Ratio method. Adjust predicted concentrations from site wide 1-hour emissions from other pollutants of combustion. For example, 1-hour SO₂ or CO concentrations used as a surrogate for 1-hour NO₂ concentrations.
 - o Develop appropriate ratios. Example, [NO₂ χ = (NO₂ Q) (SO₂ χ) ÷ (SO₂ Q)].
 - Add NO₂ background concentrations to the adjusted SO₂ or CO maximum surrogate concentration. If the project plus background is less than or equal to 188 μg/m³, the demonstration is complete.

⁶ 40 CFR 50 Appendix S, 4.2 Rounding Conventions for the 1-hour Primary NO₂ NAAQS

⁷ Q = emissions; χ = concentrations.

- Use of nearby ambient monitored data -- Planned maintenance, startup, shutdown (MSS).
 - o The site cannot be new and all facilities must have been operating.
 - Applicants must demonstrate that the hourly NO₂ emission rate being requested for the planned MSS maximum allowable emission rate table (MAERT) is a value that actually occurred (within approximately plus or minus 10%).
 - Applicants can identify the closest NO₂ ambient air monitor to the site.
 - If a monitor is within approximately 10 kilometers (~ 6 miles), the applicant must obtain and provide the highest 1-hour NO₂ concentration within at least the most recent three years of complete data, as well as the period of time the emissions actually occurred.
 - If the highest concentration exceeds the 1-hour NO₂ NAAQS, or a monitor is not within approximately 10 kilometers (~ 6 miles), the applicant must coordinate with the permit reviewer to request a modeling meeting or conference call with the permit reviewer and modeling staff to determine an alternative approach to demonstrate compliance. This approach may require refining the monitored data to account for the form of the standard, obtaining representative monitoring data from another location, and/or modeling.
- Uses of nearby ambient monitored data -- PBR/standard permit Production/Operation.
 - The site cannot be new and all facilities must have been operating.
 - Applicants can identify the closest NO₂ ambient air monitor to the site.
 - If a monitor is within approximately 10 kilometers (~6 miles), the applicant must obtain and provide the highest 1-hour NO₂ concentration within at least the most recent three years of complete data, as well as the period of time the emissions actually occurred.
 - If the highest concentration exceeds the 1-hour NO₂ NAAQS, or a monitor is not within approximately 10 kilometers (~ 6 miles), the applicant must coordinate with the air dispersion modeling team to request a modeling meeting or conference call with modeling staff to determine an alternative approach to demonstrate compliance. This approach may require refining the monitored data to account for the form of the standard, obtaining representative monitoring data from another location, and/or modeling.

Page 15. SCREEN3 can be used for major and minor projects. APD must preapprove the use of SCREEN3 for multiple facilities if the applicant proposes non-standard modeling techniques.⁸ The Industrial Source Complex model with Plume Rise Model Enhancements (ISC-PRIME) can be used for minor projects.

Page 15. Tier 2. The NOx / NO₂ conversion factor of 75% may be used for PSD and minor source screening (SCREEN3) or refined modeling (ISC-PRIME or AERMOD, as applicable).

Page 15. Tier 3. Applicants must submit protocols and APD and EPA must preapprove the use of the ozone limiting method (OLM) or the Plume Volume Molar Ratio Method (PVMRM). This requirement applies to major and minor projects.

Page 18. Emission Inventories. Applicants can obtain 1-hour NO₂ emission rates for off-property sources from the Point Source Database (PSDB). Permit reviewers can advise applicants to include emission rates from authorized facilities that are not included in the PSDB as applicable.

The stack that has the lowest value of M is used as a representative stack. The sum of the emissions from all stacks is assumed to be emitted from the representative stack; that is, the stack whose parameters resulted in the lowest value of M.

⁸ Some standard techniques: use the stack with the worst-case dispersion as a representative stack. Assume project maximum emissions are emitted from the representative stack. Or, one run for each facility using the maximum hourly emission rate and 1) sum the predicted concentrations from overlapping grids or 2) sum the highest concentration anywhere on the grid from each run to determine the maximum concentration. Use the following equation to determine the worst-case stack: M = hs V Ts ÷ Q where

M = a parameter that accounts for the relative influence of stack height, plume rise, and emission rate on concentrations;

hs = the physical stack height in meters;

 $V = (\pi/4) d_s^2 v_s = \text{stack gas flow rate in cubic meters per second};$

ds = inside stack diameter in meters;

vs = stack gas exit velocity in meters per second;

Ts = the stack gas exit temperature in Kelvin; and,

Q = pollutant emission rate in grams per second.

		ng Background Conce cubic meter (µg/m³)¹	entrations
Region / Specific County ²	Screening Background	Region / Specific County	Screening Background
1	70	10	70
		Jefferson	90
		Orange	70
2	70		
3	70	11	70
		Travis	85
4	70	12	70
Dallas	104	Brazoria	75
Ellis	85	Galveston	75
Tarrant	107	Harris	120
		Montgomery	75
5	70	13	70
Titus	90	Bexar	100
Rusk	90		
6	70	14	70
El Paso	124	Nueces	90
7	70	15	70
		Hildalgo	100
8	70	16	70
		Webb	100
9	70		
Freestone	90		
Limestone	90		

These values are conservative and based on available ambient monitoring design values (2007-2009) and may change as more research is conducted and/or data obtained.

If a value is too conservative, contact the Air Dispersion Modeling Team to determine if a more refined background concentration is available.

Interim Screening Background Concentrations, July 22, 2010

¹ Use the value for the region the project will be located in, or county if listed

² NAAQS in 188 µg/m³ converted from parts per billion based on standard temperature and pressure

Texas Natural Resource Conservation Commission INTEROFFICE MEMORANDUM

TO: NSRPD Staff DATE: August 3, 1998

FROM: Dom Ruggeri, Team Leader

Air Dispersion Modeling Team (ADMT)

SUBJECT: Modeling Guidance for Exemption 106.512 (Formerly SE 6)

If an applicant meets the general requirements to claim an exemption under this rule, the applicant must demonstrate that emissions from an exempted source will not cause or contribute to a violation of the NO_2 NAAQS [106.512(6)]. One of the methods to show compliance with the NO_2 NAAQS involves dispersion modeling [106.512(6)(A)]. The applicant can use the following procedure to conduct the modeling demonstration:

Step 1. Determine the long-term hourly emission rate for each source.

Use the applicable NO_2/NO_x ratio in Figure 1: 30 TAC §106.512(6)(A) to adjust the hourly rate for each source.

Step 2. Determine if the NO₂ de minimis is exceeded.

Use EPA's SCREEN3 or ISCST3 model to determine if the new or modified sources' emissions will exceed the NO_2 de minimis of $1 \cdot g/m^3$. If the predicted concentration is $\cdot 1 \cdot g/m^3$, the demonstration is complete. If not, go to Step 3.

Step 3. Determine the background concentration from the Screening Background Concentrations table (attached). If the predicted concentration plus background is \cdot 100 \cdot g/m³, the demonstration is complete. If not, a full state NAAQS analysis may be required if the screening background concentration cannot be refined to a more representative value. Go to Step 4.

Step 4. Determine if there is a NO₂ monitor in the county. If not, go to Step 5. Obtain a background concentration from a representative monitor in the county. Use the most recent annual concentration from the Aerometric Information Retrieval System (AIRS) [www.epa.gov/airsweb/monreps.htm] that is based on at least 6570 hours of observations.

Convert the concentration from ppm to \cdot g/m³ by multiplying the AIRS concentration by 1887. If the predicted concentration plus the monitored background concentration is \cdot 100 \cdot g/m³, the demonstration is complete. If not, a full state NAAQS analysis may be required. Contact the ADMT staff for modeling guidance.

Step 5. Contact the ADMT staff for assistance in developing a representative background concentration. If the predicted concentration plus a representative background concentration is • 100 • g/m³, the demonstration is complete. If not, a full state NAAQS analysis may be required. Contact the ADMT staff for modeling guidance.

Attachment

SCREENING BACKGROUND CONCENTRATIONS $$\operatorname{NO}_2$$ August, 1998

Note: Use regional values unless concentrations for a specific county are provided.

	Regional E	ackground / Spe	ecific County Bac	kground - Ann	ual Concentration	n (• g/m³)	
Region 1 20	Region 2 20	Region3 20	Region 4 20	Region 5 20	Region 6 20	Region 7 20	Region 8 20
Potter 25	Lubbock 25	Wichita 25	Collin 25	Rusk 30	El Paso 70	Ector 35	
			Dallas 55	Smith 25			
			Denton 25	Titus 30			
			Ellis 25				
			Tarrant 40				

	Regional E	Background / Spe	ecific County Bac	kground - Annu	ual Concentratio	n (• g/m³)	
Region 9 20	Region 10 20	Region 11 20	Region 12 20	Region 13 20	Region 14 20	Region 15 20	Region 16 20
Bell 40	Jefferson 35	Fayette 30	Brazoria 35	Bexar 50	Nueces 35	Cameron 30	Webb 25
Limestone 25	Orange 35	Travis 45	Chambers 25		Victoria 25	Hidalgo 30	
McLennan 30		Williamson 25	Ft. Bend 35				
Robertson 35			Galveston 30				
			Harris 60				
			Montgomery 25				

Appendix B

Screening Factors and Ratio Techniques

Screening Factors. For averaging times greater than one hour, the maximum concentration will generally be less than the 1-hour value. Use the factors in Table B-1 to convert point and volume source related concentrations (EPA, 1992a and ADMT memo on the ADMT Internet page for lead modeling). Do not use the multiplying factors to obtain concentrations from area sources for averaging times greater than one hour. Concentrations close to an area source will not vary as much as those for point and volume sources in response to varying wind directions, and the meteorological conditions which are likely to give maximum 1-hour concentration can persist for several hours. Therefore, to be conservative, ADMT recommends that the maximum 1-hour concentrations for area sources be assumed to apply for averaging periods out to 24 hours.

Table B - 1. Multiplying Factors to Convert 1-Hour Point and Volume Source Concentrations to Other Averaging Times

Averaging Time	Multiplying Factor
3-Hour	0.9
8-Hour	0.7
24-Hour	0.4*
Quarterly	0.2*
Annual	0.08*

^{*} Can be used for area sources.

Ratio Technique 1. This technique uses a unit emission rate (1 pound per hour or 1 gram per second) to determine if the maximum contribution from each permitted source when added together, independent of time and space, could exceed a standard or ESL. This is a conservative procedure since the maximum concentration from all sources modeled concurrently cannot be more than the sum of the maximum concentration from each source modeled separately.

Each source is evaluated separately with a unit emission rate, such as 1 pound per hour or 1 gram per second; the source's actual location; and the source's proposed stack parameters represented in the permit application. In the ISC models this is done by setting up a separate source group for

each source. The SCREEN model can also be used for this demonstration with a separate SCREEN model run for each source.

The maximum predicted concentration for each source is then multiplied by the appropriate emission rate factor for each source and for each pollutant. The emission rate factor is the ratio of the approved emission rate divided by the unit emission rate.

The sum of the maximum concentrations (for each pollutant, independent of time and space) is then compared with the threshold of concern for each pollutant. If the sum for any pollutant is greater than that value, then refined modeling may be required and if so, enter the emission rate for each source for this pollutant into the model for additional evaluation so that time and space are considered.

Determining individual source contributions to the ALL source group maximum concentration in the ISC model is not appropriate unless there is only one source or the pollutants are emitted in exactly the same amount for all sources, or pollutants are emitted in exactly the same ratio for all sources.

Ratio Technique 2. One pollutant is modeled for all sources with TNRCC approved emission rates and stack parameters. Other TNRCC approved pollutant emission rates are then compared with the modeled pollutant emission rate to determine the source which has the maximum ratio. This maximum ratio is then multiplied by the predicted maximum off-property concentration for the pollutant modeled. If the resulting maximum concentration exceeds a value of concern, then additional refined modeling may be needed and, if so, enter the emission rate for each source of this pollutant into the model.

Ambient Ratio Method. The EPA adopted a new method to predict annual NO₂ concentrations [GAQM, Section 6.2.3 (EPA, 1995a)] that can be applied during screening modeling or refined modeling. This method consists of two approaches. One approach applies a conversion factor to the emission rate, and the other applies a conversion factor to the predicted concentration. The process is outlined in the following steps that do not need to be applied in sequence.

Step 1: Assume total conversion of NO_X to NO₂. Use the NO_X emission rate as a surrogate for the NO₂ emission rate. Conduct screening or refined modeling, as applicable. This approach is conservative but is not realistic. If the concentration exceeds the de minimis or NAAQS (with background concentration added), go to Step 2.

- Step 2: Apply a conversion factor to the predicted concentration.
- **Step 2a:** Assume limited conversion of NO_X to NO_2 . Multiply the predicted annual NO_X concentration by the national default of 0.75. This approach is conservative. If additional refinement is needed, go to Step 2b if applicable.
- **Step 2b:** Obtain a representative factor for conversion of NO $_{\rm X}$ to NO $_{\rm 2}$. Multiply the predicted annual NO $_{\rm X}$ concentration by a measured NO $_{\rm 2}/$ NO $_{\rm X}$ ratio obtained from a site-specific or representative regional air monitor.
- **Step 3:** Apply a conversion factor to the emission rate.
- **Step 3a:** Assume limited conversion of NO_X to NO_2 . Multiply the NO_X emission rate by the national default of 0.75. This approach is conservative. Conduct screening or refined modeling, as applicable. If additional refinement is needed, go to Step 3b, if applicable.
- **Step 3b:** Obtain a representative factor for conversion of NO $_{\rm X}$ to NO $_{\rm 2}$. Multiply the emission rate by a measured NO $_{\rm 2}$ / NO $_{\rm X}$ ratio obtained from a site-specific or representative regional monitor. Conduct screening or refined modeling, as applicable.

http://www.epa.gov/air/criteria.html Last updated on Tuesday, November 08, 2011

National Ambient Air Quality Standards (NAAQS)

The Clean Air Act, which was last amended in 1990, requires EPA to set National Ambient Air Quality Standards (40 CFR part 50) for pollutants considered harmful to public health and the environment. The Clean Air Act identifies two types of national ambient air quality standards. Primary standards provide public health protection, including protecting the health of "sensitive" populations such as asthmatics, children, and the elderly. Secondary standards provide public welfare protection, including protection against decreased visibility and damage to animals, crops, vegetation, and buildings.

EPA has set National Ambient Air Quality Standards for six principal pollutants, which are called "criteria" pollutants. They are listed below. Units of measure for the standards are parts per million (ppm) by volume, parts per billion (ppb) by volume, and mlcrograms per cubic meter of alr (µg/m³).

Polluta [final rule		Primary/ Secondary	Averaging Time	Level	Form
Carbon Monoxide		n rima n r	8-hour	9 ppm	Not to be exceeded more than
2011]	ig 51,	prlmary	1-hour	35 ppm	once per year
<u>Lead</u> [73 FR 66964, No 2008]	ov 12 <u>,</u>	primary and secondary	Rolling 3 month average	0.15 μg/m ³	Not to be exceeded
Nitrogen Dioxide	0. 2010]	prlmary	1-hour	100 ppb	98th percentile, averaged over 3 years
[61 FR 52852, Oc		prlmary and secondary	Annual	53 ppb ⁽²⁾	Annual Mean
Ozone [73 FR 16436, Ma 2008]	ar 27,	primary and secondary	8-hour	0.075 ppm ⁽³⁾	Annual fourth-highest dally maximum 8-hr concentration, averaged over 3 years
	PM _{2.5}	primary and	Annual	15 μg/m³	annual mean, averaged over 3 years
Particle Pollution [71 FR 61144,	F1*12.5	secondary	24-hour	35 μg/m ³	98th percentile, averaged over 3 years
Öct 17, 2006]	PM ₁₀	primary and secondary	24-hour	150 μg/m³	Not to be exceeded more than once per year on average over 3 years
Sulfur DloxIde [75 FR 35520, Ju [38 FR 25678, Se		prlmary	1-hour	75 ppb ⁽⁴⁾	99th percentile of 1-hour daily maxlmum concentrations, averaged over 3 years
1973]	:μι 1 4 ,	secondary	3-hour	0.5 ppm	Not to be exceeded more than once per year

as of October 2011

See historical tables of NAAQS standards

Carbon Monoxide Lead Nitrogen Dioxide <u>Ozone</u> Particle Pollution Sulfur DloxIde

⁽¹⁾ Final rule signed October 15, 2008. The 1978 lead standard (1.5 µg/m3 as a quarterly average) remains in effect until one year after an area is designated for the 2008 standard, except that in areas designated nonattainment for the 1978, the 1978 standard remains in effect until implementation plans to attain or maintain the 2008 standard are approved.

⁽²⁾ The official level of the annual NO2 standard is 0.053 ppm, equal to 53 ppb, which is shown here for the purpose of clearer comparison to the 1hour standard.

⁽³⁾ Final rule signed March 12, 2008. The 1997 ozone standard (0.08 ppm, annual fourth-highest daily maximum 8-hour concentration, averaged over 3 years) and related implementation rules remain in place. In 1997, EPA revoked the 1-hour ozone standard (0.12 ppm, not to be exceeded more than once per year) in all areas, although some areas have continued obligations under that standard ("anti-backsliding"). The 1-hour ozone standard is attained when the expected number of days per calendar year with maximum hourly average concentrations above 0.12 ppm is less than or equal to 1.

⁽⁴⁾ Final rule signed June 2, 2010. The 1971 annual and 24-hour SO2 standards were revoked in that same rulemaking. However, these standards remain in effect until one year after an area is designated for the 2010 standard, except in areas designated nonattainment for the 1971 standards, where the 1971 standards remain in effect until implementation plans to attain or maintain the 2010 standard are approved.

Inter	im 1-Hour SO ₂ Screening	g Background Concentra cubic meter (µg/m³)¹	tions
Region/Specific County ²	Screening Background	Region/Specific County	Screening Background
1	50	5	50
Hutchinson	Cannot be used	Titus	Cannot be used
Potter	Cannot be used	Rusk	Cannot be used
Gray	Cannot be used	Harrison	Cannot be used
Moore	150	Smith	150
Carson	Cannot be used	Cass	150
Parmer	Cannot be used	Gregg	Cannot be used
2	50	Henderson	Cannot be used
Lamb	Cannot be used	Bowie	150
Hockley	80	Anderson	Cannot be used
Bailey	Cannot be used	Morris	Cannot be used
3	50	Panola	Cannot be used
Wilbarger	150	Camp	Cannot be used
Wichita	80	Franklin	Cannot be used
Nolan	80	6	50
4	50	El Paso	80
Dallas	Cannot be used	7	50
Tarrant	Cannot be used	Howard	150
Ellis	Cannot be used	Ector	80
Collin	80	Midland	80
Navarro	Cannot be used	8	50
Denton	80	Crockett	80
Kaufman	50	Coke	80

 $^{^1}$ The NAAQS is 196 $\mu g/m^3$ converted from parts per billion based on standard temperature and pressure 2 Use the value for the region the project will be located in, or county if listed

	in micrograms per	g Background Concentra cubic meter (µg/m³)	
Region/Specific County	Screening Background	Region/Specific County	Screening Background
9	50	12	50
Freestone	Cannot be used	Fort Bend	Cannot be used
Milam	Cannot be used	Harris	Cannot be used
Limestone	Cannot be used	Galveston	150
Grimes	Cannot be used	Brazoria	150
Robertson	150	Matagorda	150
McLennan	80	Colorado	Cannot be used
Brazos	Cannot be used	13	50
Bosque	80	Bexar	150
Leon	Cannot be used	Atascosa	Cannot be used
Falls	150	Comal	80
10	50	Wilson	150
Jefferson	Cannot be used	14	50
Orange	Cannot be used	Goliad	Cannot be used
11	50	Nueces	Cannot be used
Fayette	Cannot be used	Calhoun	150
Travis	80	Aransas	150
Hays	80	Bee	150
Williamson	80	Victoria	Cannot be used
Caldwell	80	Lavaca	80
Bastrop	80	Live Oak	80
Lee	Cannot be used	15	50
		16	50
		McMullen	Cannot be used

These values are conservative and based on available ambient monitoring design values (2007-2009), emissions inventory data, and permit allowable rates. However, the screening values cannot be used if more recent data indicates a higher value than in the tables. The values may change as more research is conducted and/or data obtained. It is the applicant's responsibility to determine the appropriate air quality concentrations to use for the source impact and air quality demonstration.

If a value is overly conservative, contact the Air Dispersion Modeling Team to determine if a more refined background concentration is available. For counties where the screening background values cannot be used, if the project's impact is greater than EPA's interim significance value, $7.8~\mu g/m^3$, then a more refined analysis is required.

Texas Natural Resource Conservation Commission Interoffice Memorandum

To: NSRPD Technical Staff DATE: September 4, 1998

FROM: Dom Ruggeri, Team Leader

Air Dispersion Modeling Team (ADMT)

SUBJECT: Screening Background Concentrations

The concentrations in the attached tables were developed for use with the Modeling Request Flowchart. They were determined based on a statewide review of: the highest monitored values during 1992-1997 for sulfur dioxide (SO_2), nitrogen dioxide (NO_2), particulate matter with an aerodynamic diameter of 10 microns or less (PM_{10}), lead (Pb), and carbon monoxide (CO); countywide point source emissions; and population, as a surrogate for non-point source emissions. These concentrations are meant to be conservative, since they were developed for use primarily in the screening modeling process.

The tables contain the highest background concentrations expected within a TNRCC region. For some projects, additional refinement of screening background concentrations may be appropriate, particularly in areas with multiple ambient air monitors. ADMT staff can assist in the determination of more refined screening background concentrations on a case-by-case basis.

Attachments

SCREENING BACKGROUND CONCENTRATIONS (• g/m³) September, 1998

			Pollutant / Ax	Pollutant / Averaging Period / Standard / Background Concentration	/ Standard / Ba	ckground Co	ncentration		
Region/ Specific County	Pb Quarter 1.5	CO 1-Hour 40000	CO 8-Hour 10000	$_{150}^{ m PM_{10}}$	PM ₁₀ Amual 50	NO ₂ Amual 100	SO ₂ 3-Hour 1300	$\mathrm{SO}_{_2}$ 24-Hour 365	SO ₂ Amual 80
1-	0.1	4000	1000	09	20	20	130	36	8
Carson				161	25		790	<i>5L</i>	12
Gray		14000	7000						
Hutchinson		18000	9000	75	25		1040	275	40
Moore		14000	7000						
Potter	0.4	10000	5000	90	30	25	975	240	36

			Pollutant / Av	Pollutant / Averaging Period / Standard / Background Concentration	/ Standard / Ba	ckground Co	ncentration		
Region/									
Specific County	Pb	9	8	PM_{10}	$\mathrm{PM}_{\scriptscriptstyle 10}$	$NO_{_{2}}$	$\mathrm{SO}_{\scriptscriptstyle{2}}$	${ m SO}_{\scriptscriptstyle 5}$	SO_2
	Quarter	1-Hour	8-Hour	24-Hour	Annual	Annual	3-Hour	24-Hour	Annual
	1.5	40000	10000	150	50	100	1300	365	80
2-	0.1	4000	1000	09	20	20	130	36	8
Lamb	0.4			75	25		975	240	36
Lubbock		10000	2000	164	37	25	760	75	12

5-47

			Pollutant / Av	Pollutant / Averaging Period / Standard / Background Concentration	/ Standard / Ba	ckground Co	ncentration		
Region/ Specific County	Pb Quarter 1.5	CO 1-Hour 40000	CO 8-Hour 10000	PM ₁₀ 24-Hour 150	PM ₁₀ Annual 50	NO ₂ Annual 100	SO ₂ 3-Hour 1300	SO ₂ 24-Hour 365	SO ₂ Annual 80
3-	0.1	4000	1000	09	20	20	130	36	8
Mitchell							520	150	20
Taylor		10000	2000						
Wichita		10000	2000	06	30	25			
Wilbarger							520	150	20

			Pollutant / Av	Pollutant / Averaging Period / Standard / Background Concentration	/ Standard / Ba	ckground Cor	ıcentration		
Region / Specific County	Pb Quarter 1.5	CO 1-Hour 40000	CO 8-Hour 10000	$ m PM_{10}$ 24-Hour 150	PM ₁₀ Amual 50	NO ₂ Amual 100	SO ₂ 3-Hour 1300	SO ₂ 24-Hour 365	SO ₂ Amual 80
4-	0.1	4000	1000	09	20	20	130	36	8
Collin	1.0	10000	2000	06	30	25	260	75	12
Dallas	0.4	18000	0006	120	40	25			
Denton		10000	2000	90	30	25			
Ellis	0.5	10000	2000	116	20	25	975	240	36
Hood							260	75	12
Kaufman	0.5								
Navarro							260	75	12
Palo Pinto							260	75	12
Tarrant		16000	8000	105	35	40			
			Pollutant / Av	Pollutant / Averaging Period / Standard / Background Concentration	/ Standard / Ba	ckground Cor	ncentration		

Region/ Specific County	Pb Quarter 1.5	CO 1-Hour 40000	CO 8-Hour 10000	$ m PM_{10}$ 24-Hour 150	PM ₁₀ Annual 50	NO ₂ Amual 100	SO ₂ 3-Hour 1300	SO ₂ 24-Hour 365	SO ₂ Amual 80
5-	0.1	4000	1000	09	20	20	130	36	8
Cass		10000	2000				520	150	20
Gregg		10000	2000						
Harrison				75	25		910	220	32
Hopkins							082	200	24
Morris	0.4						260	22	12
Rusk		10000	2000	105	35	30	1040	275	40
Smith		10000	2000	75	25	25			
Titus				86	35	30	1040	275	40

			Pollutant / Av	Pollutant / Averaging Period / Standard / Background Concentration	/ Standard / Ba	ckground Cor	ıcentration		
Region/ Specific County	Pb Quarter 1.5	CO 1-Hour 40000	CO 8-Hour 10000	PM ₁₀ 24-Hour 150	PM ₁₀ Annual 50	${ m NO}_2$ Annual	SO ₂ 3-Hour 1300	SO ₂ 24-Hour 365	SO ₂ Annual 80
-9	0.1	4000	1000	09	20	20	130	36	8
El Paso	0.4	28000	14000	256	63	02	910	240	36

7

			Pollutant / Av	Pollutant / Averaging Period / Standard / Background Concentration	/ Standard / Ba	ckground Co	ncentration		
Region/ Specific County	Pb Quarter 1.5	CO 1-Hour 40000	CO 8-Hour 10000	PM_{10} 24-Hour 150	PM ₁₀ Amual 50	NO ₂ Amual 100	SO ₂ 3-Hour 1300	SO ₂ 24-Hour 365	SO ₂ Amual 80
-2	0.1	4000	1000	09	20	20	130	36	8
Crane							520	150	20
Ector		10000	2000	126	56	35			
Howard		14000	7000				520	150	20
Midland		10000	2000						
Pecos							260	75	12
Ward							520	150	20
Winkler							780	200	24

			Pollutant / Av	Pollutant / Averaging Period / Standard / Background Concentration	/ Standard / Ba	ckground Co	ncentration		
	Pb	00	00	$^{\scriptscriptstyle 01}{ m Md}$	$^{\scriptscriptstyle 01}\mathrm{Md}$	'ON	SO,	°OS	SO,
Region/	Quarter	1-Hour	8-Hour	24-Hour	Annual	Annual	3-Hour	24-Hour	Annual
Specific County	1.5	40000	10000	150	20	100	1300	365	80
-8	0.1	4000	1000	09	20	20	130	98	8
Tom Green		10000	2000						

			Pollutant / Av	Pollutant / Averaging Period / Standard / Background Concentration	/ Standard / Ba	ackground Cor	ncentration		
Region/ Specific County	Pb Quarter 1.5	CO 1-Hour 40000	CO 8-Hour 10000	PM ₁₀ 24-Hour 150	PM ₁₀ Annual 50	NO ₂ Amual 100	SO ₂ 3-Hour 1300	$\mathrm{SO}_{\scriptscriptstyle 2}$ 24-Hour 365	SO ₂ Annual 80
-6	0.1	4000	1000	09	20	20	130	36	8
Bell		10000	2000	75	25	40			
Brazos		10000	5000						
Freestone				06	30				
Grimes							780	200	24
Limestone				75	25	25	1040	275	40
McClennen		10000	2000	75	25	30	790	<i>\$L</i>	12
Milam		14000	0002	75	25		1040	275	40
Robertson	0.4			06	30	35	1040	275	40
			Pollutant / Av	Pollutant / Averaging Period / Standard / Background Concentration	/ Standard / Ba	ackground Cor	ıcentration		
Region/ Specific County	Pb Quarter 1.5	CO 1-Hour 40000	CO 8-Hour 10000	PM ₁₀ 24-Hour 150	PM ₁₀ Annual 50	NO ₂ Amual 100	SO ₂ 3-Hour 1300	SO ₂ 24-Hour 365	SO ₂ Annual 80
10-	0.1	4000	1000	09	20	20	130	36	8
Angelina	0.4	10000	2000	75	25				
Hardin				75	25				
Jefferson	0.1	14000	7000	113	33	35	1040	275	40
Orange	0.4	14000	7000	75	25	35	780	200	24

			Pollutant / Av	Pollutant / Averaging Period / Standard / Background Concentration	/ Standard / Ba	ckground Cor	centration		
Region/ Specific County	Pb Quarter 1.5	CO 1-Hour 40000	CO 8-Hour 10000	PM_{10} 24-Hour 150	PM ₁₀ Annual 50	NO ₂ Annual 100	SO ₂ 3-Hour 1300	SO ₂ 24-Hour 365	SO ₂ Amual 80
11-	0.1	4000	1000	09	20	20	130	36	8
Fayette				06	30	30	1040	275	40
Travis		14000	8000	06	30	45	520	150	20
Williamson		10000	2000	75	25	25			

			Pollutant / Av	Pollutant / Averaging Period / Standard / Background Concentration	/ Standard / Ba	ckground Cor	ncentration		
Region/ Specific County	Pb Quarter 1.5	CO 1-Hour 40000	CO 8-Hour 10000	PM_{10} 24-Hour 150	PM ₁₀ Annual 50	NO ₂ Amual 100	SO ₂ 3-Hour 1300	SO ₂ 24-Hour 365	SO ₂ Annual 80
12-	0.1	4000	1000	09	20	20	130	36	8
Austin				135	45				
Brazoria		10000	2000	86	33	35	1040	275	40
Chambers		10000	2000			25	260	75	12
Fort Bend		10000	2000	86	33	35	1040	275	40
Galveston		14000	7000	116	30	30	780	275	40
Harris		20000	0800	143	47	09	1040	275	40
Montgomery	0.4			75	25	25			

			Pollutant / Av	Pollutant / Averaging Period / Standard / Background Concentration	/ Standard / Ba	ckground Cor	ıcentration		
Region/ Specific County	Pb Quarter 1.5	CO 1-Hour 33400	CO 8-Hour 10000	PM_{10} 24-Hour 150	PM ₁₀ Annual 50	NO ₂ Amual 100	SO ₂ 3-Hour 1300	SO ₂ 24-Hour 365	SO ₂ Amual 80
13-	0.1	4000	1000	09	20	20	130	36	8
Atascosa							780	200	24
Bexar	0.4	20000	0086	120	40	20	1040	275	40
Comal				75	25				

			Pollutant / Av	Pollutant / Averaging Period / Standard / Background Concentration	/ Standard / Ba	ckground Cor	ncentration		
Region/ Specific County	Pb Quarter 1.5	CO 1-Hour 40000	CO 8-Hour 10000	$_{24 ext{-} ext{Hour}}^{ ext{PM}_{10}}$	PM ₁₀ Annual 50	NO ₂ Annual 100	SO ₂ 3-Hour 1300	SO ₂ 24-Hour 365	SO ₂ Annual 80
14-	0.1	4000	1000	09	20	20	130	36	8
Aransas		10000	2000				260	75	12
Calhoun				75	25		260	75	12
Goliad							910	220	32
Nueces		14000	7000	105	35	35	910	220	32
Victoria		10000	2000			25			

		Poll	Pollutant / Averaging Period / Standard / Background Concentration	Period / Standa	ard / Backgrou	nd Concentrat	ion		
Region/ Specific County	Pb Quarter 1.5	CO 1-Hour 40000	CO 8-Hour 10000	PM ₁₀ 24-Hour 150	PM ₁₀ Amual 50	${ m NO}_2$ Amual 100	SO ₂ 3-Hour 1300	SO ₂ 24-Hour 365	SO ₂ Annual 80
15-	0.1	4000	1000	60	20	20	130	36	8
Cameron		14000	7000	128	33	30			
Hildalgo		14000	7000	128	33	30			

	SO ₂ Annual 80	8			
	SO ₂ 24-Hour 365	36			
ion	SO ₂ 3-Hour 1300	130			
nd Concentrat	NO ₂ Annual 100	20			25
ırd / Backgrouı	PM ₁₀ Annual 50	20	25		42
g Period / Standa	PM_{10} 24-Hour 150	60	75		186
Pollutant / Averaging Period / Standard / Background Concentration	CO 8-Hour 10000	1000	2000	2000	8000
Poll	CO 1-Hour 40000	4000	10000	10000	16000
	Pb Quarter 1.5	0.1			
	Pollutant Standard/ Region/ Specific County	16-	Maverick	Val Verde	Webb

ATTACHMENT 6 SUPPORTING DOCUMENTATION

OIL AND GAS STANDARD PERMIT REGISTRATION

GENELLE UNIT A1 AND B1

BURLINGTON RESOURCES OIL & GAS COMPANY LP

<u>Page</u>
Air Quality Standard Permit for Oil and Gas Handling and Production
Facilities6-1
30 TAC §116.610: Applicability6-57
30 TAC §116.611: Registration to Use a Standard Permit6-58
30 TAC §116.614: Standard Permit Fees
30 TAC §116.615: General Conditions
TCEQ Facility/Compound Specific Fugitive Emission Factors Table from
Air Permit Technical Guidance for Chemical Sources: Equipment
Fugitive Leaks, dated October 20006-63
TCEQ Guidance on Loading Operations6-66
TCEQ Table 4: Flare Factors from Air Permit Technical Guidance for
Chemical Sources: Flares and Vapor Oxidizers, dated June 19986-70
AP-42 Table 1.4-2: Emission Factors for Criteria Pollutants and Greenhouse
Gases from Natural Gas Combustion6-71
AP-42 Table 1.4-3: Emission Factors for Speciated Organic Compounds
from Natural Gas Combustion6-72
Site Data6-74
Extended Gas Analysis Reports- Representative Sample6-75
H2S Representative Reading 6-86

Air Quality Standard Permit for Oil and Gas Handling and Production Facilities

- (a) **Applicability**. This standard permit applies to all stationary facilities, or groups of facilities, at a site which handle gases and liquids associated with the production, conditioning, processing, and pipeline transfer of fluids or gases found in geologic formations on or beneath the earth's surface including, but not limited to, crude oil, natural gas, condensate, and produced water with the following conditions.
 - (1) The requirements in paragraphs (a)-(k) of this standard permit are applicable in only for new projects and dependent facilities located in the Barnett Shale (Archer, Bosque, Clay, Comanche, Cooke, Coryell, Dallas, Denton, Eastland, Ellis, Erath, Hill, Hood, Jack, Johnson, Montague, Palo Pinto, Parker, Shackelford, Stephens, Somervell, Tarrant, and Wise counties) on or after April 1, 2011. For all other new projects and dependent facilities in all other counties of the state, paragraph (1) of this standard permit is applicable.
 - (2) Only one Air Quality Standard Permit for Oil and Gas Handling and Production Facilities for an oil and gas site (OGS) may be registered for a combination of dependent facilities and authorizes all facilities in sweet or sour service. This standard permit may not be used if operationally dependent facilities are authorized by the permit by rule in Title 30, Texas Administrative Code (30 TAC) §106.352, Oil and Gas Handling and Production Facilities, or a permit under 30 TAC §116.111, General Application. Existing authorized facilities, or groups of facilities, at an OGS under this standard permit which are not changing certified character or quantity of emissions must only meet subsections (i) and (k) of this standard permit (protectiveness review and planned maintenance, startup, and shutdown (MSS) requirements) and otherwise retain their existing authorization. Other facilities which are not covered under this standard permit may be authorized by other authorizations at an OGS if (b)(6) and (k) of this standard permit are met.
 - (3) This standard permit does not relieve the owner or operator from complying with any other applicable provision of the Texas Health and Safety Code, Texas Water Code, rules of the Texas Commission on Environmental Quality (TCEQ), or any additional local, state or federal regulations. Emissions that exceed the limits in this standard permit are not authorized and are violations.
 - (4) Emissions from upsets, emergencies, or malfunctions are not authorized by this standard permit. This standard permit does not regulate methane, ethane, or carbon dioxide.

(b) Definitions and Scope.

- (1) Facility is a discrete or identifiable structure, device, item, equipment, or enclosure that constitutes or contains a stationary source. Stationary sources associated with a mine, quarry, or well test lasting less than 72 hours are not considered facilities.
- (2) Receptor includes any building which is in use as a single or multi-family residence, school, day-care, hospital, business, or place of worship at the time this standard permit is registered. A residence is a structure primarily used as a permanent dwelling. A business is a structure

that is occupied for at least 8 hours a day, 5 days a week, and does not include businesses who are handling or processing materials as described in subsection (a). This term does not include structures occupied or used solely by the owner or operator of the oil and gas facility, or the mineral rights owner of the property upon which the facility is located. All measurements of distance to receptors shall be taken from the emission release point at the oil and gas facility that is nearest to the point on the building that is nearest to the oil and gas facility.

- (3) An OGS is defined as all facilities which meet the following:
 - (A) Located on contiguous or adjacent properties;
 - (B) Under common control of the same person (or persons under common control); and
 - (C) Designated under same 2-digit standard industrial classification (SIC) codes.
- (4) For purposes of determining applicability of 30 TAC Chapter 122, Federal Operating Permits, the definitions of 30 TAC §122.10, General Definitions, apply.
- (5) A project under this standard permit is defined as the following and must meet all requirements of this standard permit prior to construction or implementation of changes.
 - (A) Any new facility or new group of operationally dependent facilities at an OGS; or
 - (B) Physical changes to existing authorized facilities or group of facilities at an OGS which increase the potential to emit over previously registered emission limits; or
 - (C) Operational changes to existing authorized facilities or group of facilities at an OGS which increase the potential to emit over previously registered emission limits.
- (6) For purposes of registration under this standard permit, the following facilities shall be included:
 - (A) All facilities or groups of facilities at an OGS which are operationally dependent on each other:
 - (B) Facilities must be located within a 1/4 mile of a project emission point, vent, or fugitive component, except for those components excluded in (b)(6)(C) of this standard permit;
 - (C) If piping or fugitive components are the only connection between facilities and the distance between facilities exceeds 1/4 mile, then the facilities are considered separate for purposes of this registration;
 - (D) The boundaries of the registration become fixed at the time this standard permit is registered. No individual facility may be authorized under more than one registration;
 - (E) Any facility or group of facilities authorized under an existing standard permit registration which is operationally dependent on a project must be revised to incorporate the project: and
 - (F) A registration may include facilities which are claiming 30 TAC § 116.620, Installation and/or Modification of Oil and Gas Facilities as well as projects which are claiming this standard permit. Existing authorized facilities, or group of facilities, at an OGS under this standard permit which are not changing registered and certified character or quantity of emissions must only meet paragraphs (i) and (k) of this standard permit (the protectiveness review and planned maintenance, startup, and shutdown (MSS) requirements) until the registration is renewed after December 31, 2015, after which paragraphs (a) (k) of this standard permit apply.
- (7) For purposes of all previous claims of this standard permit (or any previous version of this standard permit) where no project is occurring:
 - (A) Existing authorized facilities, or group of facilities, which have not registered planned MSS activity emissions prior to the effective dates in (a)(1) of this standard permit must

- meet paragraph (i) of this standard permit (planned MSS) no later than January 5, 2012; or
- (B) Existing authorized facilities, or group of facilities, which have registered planned MSS activity emissions and compliance with 30 TAC § 116.620(a)(1) has been demonstrated prior to the effective dates in (a)(1) of this standard permit, must meet paragraph (i) of this standard permit (planned MSS) no later than the registration renewal submitted after December 31, 2015.
- (8) For purposes of ensuring protection of public health and welfare and demonstrating compliance with applicable ambient air standards and effects screening levels, the impacts analysis as specified in paragraph (k) of this standard permit must be completed.
 - (A) All impacts analysis must be done on a contaminant-by-contaminant basis for any net project increases. If a claim under this standard permit is only for planned MSS under paragraph (i) of this standard permit, the analysis shall evaluate planned MSS scenarios only.
 - (B) Hourly and annual emissions shall be limited based on the most stringent of paragraphs (h) or (k) of this standard permit.

(c) Authorized Facilities, Changes and Activities.

- (1) For existing OGS which are authorized by previous versions of this standard permit:
 - (A) A project requires registration unless otherwise specified.
 - (B) The following projects do not require registration, but must comply with best management practices in paragraph (e) of this standard permit, compliance demonstrations in paragraphs (i) and (j) of this standard permit and must be incorporated into the registration at the next revision or certification:
 - (i) Addition of any piping, fugitive components, any other new facilities that increase registered emissions less than or equal to 1.0 tpy volatile organic compounds (VOC), 5.0 tpy nitrogen oxides (NOx), 0.01 tpy benzene, and 0.05 tpy hydrogen sulfide (H₂S) over a rolling 12-month period;
 - (ii) Changes to any existing facilities that increase registered emissions less than or equal to 1.0 tpy VOC, 5.0 tpy nitrogen oxides (NOx), 0.01 tpy benzene, and 0.05 tpy H₂S over a rolling 12-month period; or
 - (ii) Total increases over a rolling 60-month period that are less than or equal to 5.0 tpy VOC or NO_X, 0.05 tpy benzene, or 0.1 tpy H₂S; or
 - (iv) Addition of any new engine rated less than 100 horsepower (hp); or
 - (v) Replacement of any facility if the new facility does not increase the previous registered emissions.
 - (C) In lieu of registering proposed changes under this standard permit, incremental emissions increases associated with construction of new facilities or changes to existing facilities may be authorized by 30 TAC §106.261, Facilities (Emission Limitations) or §106.262, Facilities (Emissions and Distance Limitations), if the maximum worst-case emissions also meet the limitations established by paragraphs (b)(8) and (k) of this standard permit for all air contaminants with proposed increases.
- (2) All authorizations under this standard permit shall meet the following:
 - (A) New, changed, or replacement facilities shall not exceed the thresholds for major source or major modification as defined in 30 TAC §116.12, Nonattainment and Prevention of Significant Deterioration Review Definitions, and in Federal Clean Air Act §112(g) or §112(j);

- (B) All facilities shall comply with all applicable 40 Code of Federal Regulations (CFR), Parts 60, 61, and 63 requirements for New Source Performance Standards (NSPS), National Emission Standards for Hazardous Air Pollutants (NESHAP), and Maximum Achievable Control Technology (MACT); and
- (D) All facilities shall comply with all applicable requirements of 30 TAC Chapters 111, Control of Air Pollution from Visible Emissions and Particulate Matter, 112, Control of Air Pollution from Sulfur Compounds, 113, Standards of Performance for Hazardous Air Pollutants and for Designated Facilities and Pollutants, 115, Control of Air Pollution from Volatile Organic Compounds), and 117, Control of Air Pollution from Nitrogen Compounds.
- (3) To be eligible for this standard permit an applicant:
 - (A) shall meet all applicable requirements as set forth in this standard permit;
 - (B) shall not misrepresent or fail to fully disclose all relevant facts in obtaining the permit; and
 - (C) shall not be indebted to the state for failure to make payment of penalties or taxes imposed by the statutes or rules within the commission's jurisdiction.
- (6) All facilities related to the operation of any OGS, under any version of this standard permit (or co-located at a site with an OGS standard permit), previously authorized by, and continuing to meet, the conditions of a permit by rule under 30 TAC Chapter 106, Permits by Rule (or any historical version) must:
 - (A) Be incorporated into this standard permit in any initial registration, revision, or renewal for this standard permit. These facilities will become authorized by this standard permit and previous authorizations will be voided.
 - (B) Meet all emission limits established by this standard permit and review in accordance with paragraph (b)(8) of this standard permit.
 - (C) Meet requirements of paragraphs (e), (i), and (j) of this standard permit for Best Management Practices and Minimum Requirements, Planned MSS, and associated Records, Sampling and Monitoring of this standard permit.
 - (D) Only if facilities or groups of facilities are changed in such a way as to increase the potential to emit, production processing capacity, or registered emission rate, the requirements in paragraph (h) (BACT) of this standard permit are required to be met. In all other cases, these facilities are not required to meet paragraph (h) of this standard permit.

(d) Facilities and Exclusions

- (1) Only the following specific facilities and groups of facilities have been evaluated for this standard permit, along with supporting infrastructure equipment and facilities, and may be included in a registration:
 - (A) Fugitive components, including valves, pressure relief valves, pipe flanges and connectors, pumps, compressors, stuffing boxes, instrumentation and meters, natural gas driven pneumatic pumps, and other similar devices with seals that separate process and waste material from the atmosphere and the associated piping;
 - (B) Separators, including all gas, oil and water physical separation units;

- (C) Treatment and processing equipment, including heater-treaters, methanol injection, glycol dehydrators, molecular or mole sieves, amine sweeteners, H₂S scavenger chemical reaction vessels for sulfur removal, and iron sponge units;
- (D) Cooling towers and associated heat exchangers;
- (E) Gas recovery units, including cryogenic expansion, absorption, adsorption, heat exchangers and refrigeration units;
- (F) Combustion units, including engines, turbines, boilers, reboilers, and heaters;
- (G) Storage tanks for crude oil, condensate, produced water fuels, treatment chemicals, slop and sump oils and pressure tanks with liquified petroleum gases;
- (H) Surface facilities associated with underground storage of gas or liquids;
- (I) Truck loading equipment;
- (J) Control equipment, including vapor recovery systems, glycol and amine reboiler condensers, flares, vapor combustors, and thermal oxidizers; and
- (K) Temporary facilities used for planned maintenance, and temporary control devices for planned start-ups and shutdowns
- (2) **Exclusions.** The following are not authorized under this standard permit:
 - (A) Sour water strippers or sulfur recovery units;
 - (B) Carbon dioxide hot carbonates processing units;
 - (C) Water injection facilities (these facilities may otherwise authorized by 30 TAC §106.351, Salt Water Disposal);
 - (D) Liquefied petroleum gases, crude oil, or condensate transfer or loading into or from railcars, ships, or barges. These facilities may otherwise be authorized by 30 TAC §106.261, Facilities (Emission Limitations)) and §106.262, Facilities (Emissions and Distance Limitations);
 - (E) Incinerators for solid waste destruction;
 - (F) Remediation of petroleum contaminated water and soil. These facilities may otherwise authorized by 30 TAC §106.533, Remediation; and
 - (G) Cooling Towers and heat exchangers with direct contact with gaseous or liquid process streams containing VOC, H₂S, halogens or halogen compounds, cyanide compounds, inorganic acids, or acid gases.
- (e) Best Management Practices (BMP) and Best Available Control Technology (BACT)

 Requirements. For any project, and any associated emission control equipment registered under this

standard permit this paragraph shall be met as applicable. These requirements are not applicable to existing, unchanging facilities until any renewal submitted after December 31, 2015.

- (1) All facilities which have the potential to emit air contaminants must be maintained in good working order and operated properly during facility operations. Each operator shall establish and maintain a program to replace, repair, and/or maintain facilities to keep them in good working order. The minimum requirements of this program shall include:
 - (A) Compliance with manufacturer's specifications and recommended programs applicable to equipment performance and effect on emissions, or alternatively, an owner or operator developed maintenance plan for such equipment that is consistent with good air pollution control practices.
 - (B) Cleaning and routine inspection of all equipment; and
 - (C) Replacement and repair of equipment on schedules which prevent equipment failures and maintain performance.

- (2) Any OGS facility shall be operated at least 50 feet from any property line or receptor (whichever is closer to the facility). This distance limitation does not apply to the following:
 - (A) Any fugitive components that are used for isolation and or safety purposes may be located at one-half of the width of any applicable casement;
 - (B) Any facility at a location for which the distance requirements were satisfied at the time this standard permit is registered (provided that the authorization was maintained) regardless of whether a receptor is subsequently built or put to use 50 feet from any OGS facility; or
 - (C) Existing facilities which are located less than 50 feet from a property line or receptor when constructed and previously authorized. If modified or replaced, the operator shall consider, to the extent that good engineering practice will permit, moving these facilities to meet the 50 foot requirement. Replacement facilities must meet all other requirements of this standard permit.
- (3) Engines and turbines shall meet the emission and performance standards listed in Table 6 in paragraph (m) and the following requirements:
 - (A) Liquid fueled engines used for back-up power generation and periodic power needs at the OGS are authorized if the fuel has no more than 0.05% sulfur and the engine is operated less than 876 hours per rolling 12-month period.
 - (B) Engines and turbines used for electric generation more than 876 hours per rolling 12-month period are authorized if no reliable electric service is readily available. In all other circumstances, electric generators must meet the technical requirements of the Air Quality Standard Permit for Electric Generating Unit (EGU) (not including the EGU standard permit registration requirements) and the emissions shall be included in the registration under this standard permit;
 - (C) All applicable requirements of 30 TAC Chapter 117; and
 - (D) All applicable requirements of 40 CFR Part 60 and 40 CFR Part 63.
 - (E) Compression ignition engines that are rated less than 225 kW (300 hp) and emit less than or equal to the emission tier for an equivalent sized model year 2008 non-road compression ignition engine located at 40 CFR § 89.112, Table 1 are authorized.
- (4) Open-topped tanks or ponds containing VOCs or H_2S are allowed up to a PTE equal to 1 tpy of VOC and 0.1 tpy of H_2S .
- (5) All process equipment and storage facilities individually must meet the requirements of BACT listed in Table 10 in paragraph (m). Any combination of process equipment and storage facilities with an uncontrolled PTE of equal to or greater than 25 tpy of VOC must also meet the requirements of Table 10, row titled "Combined Control Requirements". All of the following streams and facilities must be included for this site-wide assessment:
 - (A) For any gaseous vent stream with a concentration of 1% VOC must be considered for capture and control requirements;
 - (B) For any liquid stream with a potential to emit of equal to or greater than 1 tpy VOC for each vessel or storage facility.
- (6) The following shall apply to all fugitive components associated with the project:
 - (A) All seals and gaskets in VOC or H₂S service shall be installed, checked, and properly maintained to prevent leaking. All components shall be physically inspected quarterly for leaks.

- (B) New and replaced fugitive components and instrumentation in gas or liquid service with the uncontrolled potential to emit equal to or greater than 10 tpy VOC or 1 tpy H₂S are subject to a leak detection and repair (LDAR) program as specified in Table 9 in paragraph (m). Additional requirements are applicable where uncontrolled potential to emit equal to or greater than 25 tpy VOC or 5 tpy H₂S as specified in Table 9. Planned MSS from fugitive components must also meet the requirements of Table 9.
- (C) All components found to be leaking shall be repaired. Every reasonable effort shall be made to repair a leaking component. All leaks not repaired immediately shall be tagged or noted in a log. At manned sites, leaks shall be repaired no later than 30 days after the leak is found. At unmanned sites, leaks shall be repaired no later than 60 days after the leak is found. If the repair of a component would require a unit shutdown, which would create more emissions than the repair would eliminate, the repair may be delayed until the next shutdown.
- (D) Tank hatches, not designed to be completely sealed, shall remain closed (but not completely sealed in order to maintain safe design functionality) except for sampling, gauging, loading, unloading, or planned maintenance activities.
- (E) To the extent that good engineering practices will permit, new and reworked valves and piping connections shall be located in a place that is reasonably accessible for leak checking during plant operation and underground process pipelines shall contain no buried valves such that fugitive emission monitoring is rendered impractical.
- (7) Tanks and vessels must utilize a paint color that minimizes the effects of solar heating (including, but not limited to, white or aluminum). To meet this requirement the solar absorptance should be 0.43 or less, as referenced in Table 7.1-6 in Compilation of Air Pollutant Emission Factors (AP-42). Paint shall be applied according to paint producers recommended application requirements if provided and in sufficient quantity as to be considered solar resistant. Paint shall be maintained in good condition and will not compromise tank integrity. Minimal amounts of rust may be present not to exceed 10% of the external surface area of the roof or walls of the tank and in no way may compromise tank integrity. Additionally, up to 10% of the external surface area of the roof or walls of the tank or vessel may be painted with other colors to allow for identification and/or aesthetics. For tanks and vessels purposefully darkened to create the process reaction and help condense liquids from being entrained in the vapor or are in an area whereby a local, state, federal law, ordinance, or private contract predating this standard permit's effective date establishes in writing tank and vessel colors other than white, these requirements do not apply.
- (8) All emission estimation methods including but not limited to computer programs such as GRI-GLYCalc, AmineCalc, E&P Tanks, and Tanks 4.0, must be used with monitoring data generated in accordance with Table 8 in subsection (m) of this section where monitoring is required. All emission estimation methods must also be used in a way that is consistent with protocols established by the commission or promulgated in federal regulations (NSPS, NESHAPS). Where control of emissions is relied upon to meet subsection (k) of this section, control monitoring is required.
- (9) Process reboilers, heaters, and furnaces that are also used for control of waste gas streams may claim 50 to 99% destruction efficiency for VOCs and H₂S depending on the design and level of monitoring applied. The 90% destruction may be claimed where the waste gas is delivered to the flame zone or combustion fire box with basic monitoring as specified in paragraph (j). Any value greater than 90% and up to 99% destruction efficiency may be claimed where

enhanced monitoring and/or testing are applied as specified in paragraph (j). If the waste gas is premixed with the primary fuel gas and used as the primary fuel in the device through the primary fuel burners, 99% destruction may be claimed with basic monitoring as specified in paragraph (j). In systems where the combustion device is designed to cycle on and off to maintain the designed heating parameters, and may not fully utilize the waste gas stream, records of run time and enhanced monitoring is required to claim any run time beyond 50%.

- (10) Vapor recovery Systems (VRSs) may claim up to 100% control. The control efficiency is based on whether it is a mechanical VRU (mVRU) or a liquid VRU (lVRU). The VRUs must meet the appropriate design, monitoring and record-keeping in Table 7 and Table 8 in paragraph (m).
- (11) Flares used for control of emissions from production, planned MSS, emergency, or upset events may claim design destruction efficiency of 98% for VOCs and H₂S and 99% for VOCs containing no more than three carbon atoms that contain no elements other than carbon and hydrogen. All flares must be designed and operated in accordance with the following:
 - (A) Meet specifications for minimum heating values of waste gas, maximum tip velocity, and pilot flame monitoring found in 40 CFR §60.18;
 - (B) If necessary to ensure adequate combustion, sufficient gas shall be added to make the gases combustible;
 - (C) An infrared monitor is considered equivalent to a thermocouple for flame monitoring purposes;
 - (D) An automatic ignition system may be used in lieu of a continuous pilot;
 - (E) Flares must be lit at all times when gas streams are present;
 - (F) Fuel for all flares shall be sweet gas or liquid petroleum gas except where only field gas is available and it is not sweetened at the site; and
 - (G) Flares shall be designed for and operated with no visible emissions, except for periods not to exceed at total of 5 minutes during any 2 consecutive hours. Acid gas flares which must comply with opacity limits and records in accordance with 30 TAC §111.111(a)(4), Requirements for Specified Sources, regarding gas flares, are exempt from this visible emission limitation.
 - (H) Flares may be designed with steam or air assist to help reduce visible emissions from the flare but must meet the appropriate requirements in 40 CFR 60.18.
 - (I) At no time shall minimum heating values fall below the associated minimum heating value in 60.18
- (12) Thermal oxidation and vapor combustion control devices may claim design destruction efficiency from 90 to 99.9% for VOCs and H₂S depending on the design and the level of monitoring and testing applied. A device designed for the variability of the waste gas streams it controls with basic monitoring to indicate oxidation or combustion is occurring when waste gas is directed to the device may claim 90% destruction efficiency. Devices with intermediate monitoring, designed for the variability of the waste gas streams they control, with a fire box or fire tube designed to maintain a temperature above 1,400 degrees Fahrenheit (F) for 0.5 seconds, residence time; or designed to meet the parameters of a flare with minimum heating values of waste gas, maximum tip velocity, and pilot flame monitoring as found in 40 CFR § 60.18, but within a full or partial enclosure may claim a design destruction efficiency of 90 to 98%. Devices with enhanced monitoring and ports and platforms to allow stack testing may

claim a 99% efficiency where the devices are designed for the variability of the waste gas streams they control, with a fire box or fire tube designed to maintain a temperature above 1,400 degrees F for 0.5 seconds, residence time. The devices that can claim 99% destruction efficiency may claim 99.9% destruction efficiency if stack testing is conducted and confirms the efficiency and the enhanced monitoring is adjusted to ensure the continued efficiency. Temperature and residence time requirements may be modified if stack testing is conducted to confirm efficiencies.

(f) Registration, Revision, and Renewal Requirements

- (1) For all previous claims of this standard permit (or any previous version of this standard permit) existing authorized facilities, or group of facilities, are not required to meet the requirements of this standard permit, with the exception of planned MSS, until a renewal under the standard permit is submitted after December 31, 2015.
- (2) If no other changes except for authorizing planned MSS occurs at an existing OGS under this standard permit, or any previous version of this standard permit, (b)(7) applies.
 - (A) Records demonstrating compliance with paragraph (i) must be kept;
 - (B) If the OGS must certify emissions to establish nonapplicability of prevention of significant deterioration (PSD), nonattainment new source review (NNSR), or the federal operating permit programs, this certification may be filed using Form APD-CERT. No fee is required for this certification.
 - (C) Planned MSS shall be incorporated at the next revision or update to a registration under this standard permit after January 5, 2012, and no later than any renewal submitted after December 31, 2015.
- (3) Facilities, groups of facilities or planned MSS from facilities registered under this standard permit cannot also be authorized by a permit under 30 TAC §116.111, General Application.
- (4) Prior to construction or implementation of changes for any project which meets this standard permit a notification shall be submitted through the e-Permits system. This notification shall include the following:
 - (A) Identifying information (Core Data) and a general description of the project must be submitted through e-Permits (or if not available, hard-copy) using the "APD OGS New Project Notification."
 - (B) A fee of \$25 for small businesses as defined in 30 TAC \$106.50, or \$50 for all others must be submitted through the commission's e-Pay system.
- (5) For any registration which meets the emission limitations of this standard permit must meet the following:
 - (A) Within 90 days after start of operation or implemented changes (whichever occurs first), the facilities must be registered with a PI-1S Standard Permit Application.
 - (B) This registration shall include a detailed summary of maximum emissions estimates based on: site-specific or defined representative gas and liquid analysis; equipment design specifications and operations; material type and throughput; and other actual parameters essential for accuracy for determining emissions and compliance with all applicable requirements of this standard permit.

- (C) The fee for this registration shall be \$475 for small businesses, or \$850 for all others.
- (D) Construction may begin any time after receipt of written notification to the executive director. Operations may continue after receipt of registration if there are no objections or 45 days after receipt by the executive director of the registration, whichever occurs first.
- (6) If an OGS emissions increase, either through a change in production or addition of facilities, the site may change authorization (Level 1 or Level 2 PBR in 30 TAC §106.352 or Standard Permit) in the following circumstances:
 - (A) Within 90 days from the initial notification of construction of an oil and gas facility, a registration can update the authorization mechanism by submitting an initial registration or revision to the PBR or Standard Permit.
 - (B) Within 90 days of the change of production or installation of additional equipment, by submitting an initial registration or revision to the PBR or Standard Permit.
- (7) All registrations, registration revisions, and renewals shall be submitted to the commission through a PI-1S Standard Permit Registration Form. Fee requirements do not apply when there are changes in representations with no increase in emissions within 6-months after a standard permit registration has been issued.
- (g) Any claim under this standard permit must comply with all applicable requirements of 30 TAC \$116.610; \$116.611, Registration to Use a Standard Permit; \$116.614, Standard Permit Fees; and \$116.615, General Conditions. This standard permit supersedes: the notification requirements of 30 TAC \$116.615, General Conditions; and the emission limitations of 30 TAC \$116.610(a)(1), Applicability.
- (h) **Emission Limitations**. Total maximum estimated registered or certified emissions shall meet the most stringent of the following. All emissions estimates must be based on representative worst-case operations and planned MSS activities.
 - (1) Total maximum estimated annual emissions of any air contaminant shall not exceed the applicable limits for a major stationary source or major modification for PSD and NNSR as specified in 30 TAC §116.12.
 - (2) Emissions must meet the limitations established in paragraph (k) of this standard permit.
 - (3) Maximum emissions are limited to less than the following after any operator limitations or controls:

Air contaminant	steady-state or < 30 psig periodic releases lb/hr	≥ 30 psig periodic lb/hr up to 600 hr/yr	Total tpy
Total VOC*			250
Total crude oil or condensate VOC*	145	318	
Total natural gas VOC*	750	1635	
Benzene	7	15.4	10.2
Hydrogen sulfide	10.8	9.8	47
Sulfur dioxide	93.2		250
Nitrogen oxides	121		250
Carbon monoxide	104		250
PM10 and PM2.5	28		15

^{*} VOC is defined in 101.1(115) and does not include methane and ethane

- (i) **Planned Maintenance, Start-ups and Shutdowns (MSS).** For any facility, group of facilities or site using this standard permit or previous versions of this standard permit, the following shall apply:
 - (1) Prior to January 5, 2012, representations and registration of planned MSS is voluntary, but if represented must meet the applicable limits of this standard permit. After January 5, 2012, all emissions from planned MSS activities and facilities must be considered for compliance with applicable limits of this standard permit unless otherwise specified in (b)(7). This standard permit may not be used at a site or for facilities authorized under 30 TAC §116.111 if planned MSS has already been authorized under that permit.
 - (2) As specified, releases of air contaminants during, or as result of, planned MSS must be quantified and meet the emission limits in this standard permit, as applicable. This analysis must include:
 - (A) Alternate operational scenarios or redirection of vent streams;
 - (B) Pigging, purging, and blowdowns;
 - (C) Temporary facilities if used for degassing or purging of tanks, vessels, or other facilities;
 - (D) Degassing or purging of tanks, vessels, or other facilities; and
 - (E) Management of sludge from pits, ponds, sumps, and water conveyances.
 - (3) Other planned MSS activities authorized by this standard permit are limited to the following. These planned MSS activities require only recordkeeping of the activity.
 - (A) Routine engine component maintenance including filter changes, oxygen sensor replacements, compression checks, overhauls, lubricant changes, spark plug changes, and emission control system maintenance.
 - (B) Boiler refractory replacements and cleanings.
 - (C) Heater and heat exchanger cleanings.
 - (D) Turbine hot standard permit swaps.

- (E) Pressure relief valve testing, calibration of analytical equipment; Instrumentation/analyzer maintenance; replacement of analyzer filters and screens.
- (4) Engine/compressor start-ups associated with preventative system shutdown activities have the option to be authorized as part of typical operations if:
 - (A) Prior to operation, alternative operating scenarios to divert gas or liquid streams are registered and certified with all supporting documentation;
 - (B) Engine/compressor shutdowns shall result in no greater than 4 lbs/hr of natural gas emissions; and
 - (C) Emissions which result from subsequent compressor start-up activities are controlled to a minimum of 98% efficiency for VOC and H₂S.
- (j) Records, Sampling and Monitoring. The following records shall be maintained at a site in written or electronic form and be readily available to the agency or local air pollution control program with jurisdiction upon request. All required records must be kept at the facility site. If the facility normally operates unattended, records must be maintained at an office within Texas having day-to-day operational control of the plant site. Other requirements, including but not limited to, federal recordkeeping or testing requirements, can be used to demonstrate compliance if the other requirements are at least as stringent as the associated requirements in the table below. Any documentation that is already being kept for other purposes will suffice for demonstrating requirements. If a control or method is not relied upon to meet this standard permit, then the associated sampling, monitoring, and records are not applicable.
 - (1) Sampling and demonstrations of compliance shall include the requirements listed in Table 7 in paragraph (m) of this standard permit.
 - (2) Monitoring and records for demonstrations of compliance shall include the requirements listed in Table 8 in paragraph (m) of this standard permit.

(k) Emission Limits Based on Impacts Evaluation.

- (1) All impacts evaluations must be completed on a contaminant-by-contaminant basis for only any net emissions increases resulting from a project and must meet the following as appropriate:
 - (A) Compliance with state or federal ambient air standards shall be demonstrated for NO₂, SO₂, and H₂S at any property-line within 1 mile of a project.
 - (B) Compliance with hourly effects screening levels (ESLs) for benzene and annual ESL for benzene, shall be demonstrated at the nearest receptor within 1 mile of a project.
- (2) Distance measurements shall be determined using the following:
 - (A) For each facility or group of facilities, the shortest corresponding distance from any emission point, vent, or fugitive component to the nearest receptor must be used with the appropriate compliance determination method with the published ESLs as found through the commissioner's internet webpage.
 - (B) For each facility or group of facilities, the shortest corresponding distance from any emission point, vent, or fugitive component to the nearest property line must be used with the appropriate compliance determination method with any applicable state or federal ambient air quality standard.

- (3) Impacts evaluations are not required under the following cases:
 - (A) If there is no receptor within 1 mile of a registration no further ESL review is required.
 - (B) If there is no property line within 1 mile of a registration no further ambient air quality review is required.
 - (C) If the project total emissions are less than any of the following rates, no additional analysis or demonstration of the specified air contaminant is required:

Air contaminant	lb/hr
Benzene	0.039
Hydrogen sulfide	0.025
Sulfur dioxide	2
Nitrogen oxides	4

- (4) Evaluation of emissions shall meet the following.
 - (A) For all evaluations of NO_x to NO₂ a conversion factor of 0.20 for 4-stroke rich and lean burn engines and 0.50 for 2-stroke engines may be used.
 - (B) The maximum predicted concentration or rate at the property boundary or receptor, whichever is appropriate, must not exceed a state or federal ambient air standard or ESL.
- (5) The impacts analysis shall be based on the following facility emissions:
 - (A) The following shall be met for ESL reviews:
 - (i) If a project's air contaminant maximum predicted concentrations are equal to or less than 10% of the appropriate ESL, no further review is required;
 - (ii) If a project's air contaminant maximum predicted concentrations combined with project increases for that contaminant over a rolling 60-month period after the effective date of this revised standard permit are equal to or less than 25% of the appropriate ESL, no further review is required.
 - (iii) In all other cases, all facility emissions at an OGS, regardless of authorization type, located within 1 mile of a project requiring registration under this standard permit shall be evaluated.
 - (B) The following shall be met for state and federal ambient air quality standard reviews:
 - (i) If a project's air contaminant maximum predicted concentrations are equal to or less than 10% the significant impact level (SIL) (also known as de minimis impact in 30 TAC 101, General Rules), no further review is required;
 - (ii) In all other cases, all facility emissions at an OGS, regardless of authorization type, located within 1 mile of a project requiring registration under this standard permit shall be evaluated.
- (6) Evaluation must comply with one of the methods listed with no changes or exceptions:
 - (A) Tables
 - (i)Emission impact Tables 2 5F in paragraph (m) of this standard permit may be used in accordance with the limits and descriptions in Table 1 in paragraph (m).

- (ii) Values in Tables 2 5F in paragraph (m) of this standard permit may be used with linear interpolation between height and distance points. A distance of less than 50 fect or greater than 5,500 fect may not be used. Release heights may not be extrapolated beyond the limits of any table and instead the minimum or maximum height will be used. If distances and release heights are not interpolated, the next lowest height and lesser distances shall be used for determination of maximum acceptable emissions. All facilities exempted from the distance to the property line restriction in paragraph (e)(2) of this standard permit must use 50 feet as the distance to the property line for those ambient standards based on property line.
- (B) **Screening Modeling.** A screening model may be used to demonstrate acceptable emissions from an OGS under this standard permit if all of the parameters in the screening modeling protocol provided by the commission are met.
- (C) **Dispersion Modeling.** A refined dispersion model may be used to demonstrate acceptable emissions from an OGS under this standard permit if all of the parameters in the refined dispersion modeling protocol provided by the commission are met.
- (1) **Existing, Unchanged Facilities and Projects Before Effective Date.** The requirements in 30 TAC §116.620 are applicable to existing unchanged facilities and new or changing facilities as specified in paragraph (a)(1) of this standard permit.
- (m) The following Tables shall be used as required by this standard permit.
 - Table 1 Emission Impact Tables Limits and Descriptions;
 - Table 2 Generic Modeling Results for Fugitives & Process Vents;
 - Table 3 Generic Modeling Results for Flares and Thermal Destruction Devices
 - Table 4 Generic Modeling Results for Blowdowns, Purging, and Pigging
 - Table 5A Generic Modeling Results for Engines Less Than or Equal to 250 hp
 - Table 5B Generic Modeling Results for Engines Greater Than 250 hp to Less Than or Equal to 500 hp
 - Table 5C Generic Modeling Results for Engines Greater Than 500 hp to Less Than or Equal to 1000 hp
 - Table 5D Generic Modeling Results for Engines Greater Than 1000 hp to Less Than or Equal to 1500 hp
 - Table 5E Generic Modeling Results for Engines Greater Than 1500 hp to Less Than or Equal to 2000 hp
 - Table 5F Generic Modeling Results for Engines Greater Than 2000 hp
 - Table 6 Engine and Turbine Emission and Operational Standards
 - Table 7 Sampling and Demonstrations of Compliance;
 - Table 8 Monitoring and Records Demonstrations;
 - Table 9 Fugitive Component Leak Detection and Repair (LDAR) Control Program; and
 - Table 10 Best Available Control Technology (BACT) Requirements

Table 1 Emission Impact Tables Limits and Descriptions

Торіс	Description	Details
Variables	E _{MAX HOURLY}	the maximum acceptable hourly (lb/hr) emissions for a specific air contaminant
	E _{MAX} ANNUAL	the maximum acceptable annual (tpy) emissions for a specific air contaminant
	P	ambient air standard for a specific air contaminant (µg/m³)
	ESL	current published effects screening level for a specific air contaminant (µg/m³)
	G	the most stringent of any applicable generic value from the Generic Modeling Results Tables at the emission point's release height and distance to property line $(\mu g/m^3/lb/hr)$
	WR _{EPNx} =	weighted ratio of emissions of a specific air contaminant for each EPN divided by the sum of total emissions for all EPNs that emit that contaminant or $(E_{\text{EPNx}}/E_{\text{total}})$
Single releases or co-located	hourly ambient air standard	emissions are determined by: $E_{MAXHOURLY} = P/G$
groups of similar releases	hourly health effects review	emissions are determined by: $E_{MAXHOURLY} = ESL/G$
	annual ambient air standard	emissions are determined by: $E_{MAXANNUAL} = (8760/2000) P/(0.08*G)$
	annual health effects review	emissions are determined by: $E_{MAXANNUAL} = (8760/2000) ESL/(0.08*G)$
Multiple release points	Limits	If weighted ratios are not used, the total quantity of emissions shall be assumed to be released from the most conservative applicable G value at the site.
	hourly ambient air standard	emissions are determined by: $E_{MAXHOURLY} = (WR_{EPNL}) (P/G_{EPNL}) + (WR_{EPN2}) (P/G_{EPN2}) + (WR_{EPNN}) (P/G_{EPNN})$
	hourly health effects review	emissions are determined by: $E_{MAXHOURLY} = (WR_{EPNL}) (ESL/G_{EPNL}) + (WR_{EPN2}) (ESL/G_{EPN2}) + \dots (WR_{EPNN}) (ESL/G_{EPNN})$
	annual ambient air standard	emissions are determined by: $E_{MAXANNUAL} = (8760/2000) [(WR_{EPNI}) (P/0.08*G_{EPNI}) + (WR_{EPN2}) (P/0.08*G_{EPN2}) + (WR_{EPN2}) (P/0.08*G_{EPN2})]$
	annual health effects review	emissions are determined by: $E_{MAXANNUAL} = (8760/2000) [(WR_{EPNL}) (ESL/0.08*G_{EPNL})] + (WR_{EPNL}) (ESL/0.08*G_{EPNL}) + (WR_{EPNL}) (ESL/0.08*G_{EPNL})]$

 G_{hourly} ($\mu g/m^3$)/(lb/hr) Process Vessel ft Vent 28 28 28 28 28 28 28 26 25 24 24 24 24 23 23 22 22 21 21 21 21 21 21 G_{hourly} (µg/m³)/(lb/hr) Process Vessel ft Vent $G_{hourly} (\mu g/m^3)/(1b/hr)$ Process Vessel ft Vent 5 6 0/ 58 55 $G_{\rm hourly}~(\mu g/m^3)/(1b/hr)$ Process Vessel fi Vent 96 96 68 88 G_{houty} ($\mu g/m^3$)/(lb/hr) Process Vessel ft Vent $G_{aourly}~(\mu g/m^3)/(lb/hr)$ Process Vessel ft Vent 9/ $G_{\rm hourly}~(\mu g/m^3)/(1b/hr)$ Tank Vents 20 ft height $G_{hourly}\,(\mu g/m^3)/(lb/hr)$ 10 ft Loading height 574 Fugitive 3ft height Table 2: Fugitives and Process Vents $\frac{G_{hourty}}{(\mu g/m^3)/(lb/hr)}$

Table 2 Fugitives and Process Vents Table

Table 2: Fugitives an	Table 2: Fugitives and Process Vents(continued)	inued)							
) Distance	Fugitive 3ft height	Loading 10 ft height	Tank Vents 20 ft height	Process Vessel 10 ft Vent	Process Vessel 20 ft Vent	Process Vessel 30 ft Vent	Process Vessel 40 ft Vent	Process Vessel 50 ft Vent	Process Vessel 60 ft Vent
· (ft)	$\frac{G_{hourly}}{(\mu g/m^3)/(1b/hr)}$	G _{hourly} (μg/m³)/(lb/lnr) G _{hourly} (μg/m³)/($G_{\rm bourly}~(\mu g/m^3)/(lb/hr)$	$G_{\rm souriy}~(\mu g/m^3)/(lb/lnr)$	$G_{nouty} \left(\mu g/m^3 \right) \! / \! (lb/ln) \left G_{nouty} \left(\mu g/m^3 \right) \! / \! (lb/ln) \right G_{houty} \left(\mu g/m^3 \right) \! / \! (lb/ln) \right)$	$G_{\rm hourly}~(\mu g/m^3)/(lb/l\pi)$	$G_{houty}\left(\mu g/m^3\right)/(lb/hr) \left \begin{array}{c} G_{houty}\left(\mu g/m^3\right)/(lb/hr) \end{array} \right G_{houty}\left(\mu g/m^3\right)/(lb/hr)$	$G_{hourly} (\mu g/m^3)/(1b/hr)$	$G_{\rm hourly}(\mu g/m^3)/(lb/hr)$
2300	73	94	83	61	46	39	137	36	61
2400	89	88	78	59	45	37	36	35	19
2500	64	82	74	99	43	36	35	34	18
2600	09	77	70	54	42	34	33	32	18
2700	99	73	99	52	41	33	32	31	17
2800	53	69	63	50	40	32	31	30	17
2900	50	59	09	48	39	31	30	29	16
3000	48	62	57	46	37	30	29	28	16
3500	37	49	46	38	32	26	25	25	14
4000	30	40	38	32	28	24	23	22	12
4500	25	33	32	28	25	21	20	20	11
5000	22	28	27	24	22	19	18	18	10
5500	19	25	24	21	19	17	17	16	6

Table 3: Flares and Thermal Dest Generic Modeling Results Distance (ft) 50 100 150 200 300 400 600 700	hr)	ft height _{uty} (µg/m²)/(lb/hr)	40 ft height G _{houry} (µg/m³)/(lb/hr) 26 26 26 26 26 26 26 26 26 26 26	50 ft height G _{houry} (µg/m³)/(lb/hr) 25 25 25 25 25 25 25 25 25	60 ft height G _{hourly} (µg/m²)/(lb/hr) 23 23 23 23 23 23 23 23 23
Generic Modeling Results Distance (ft) 50 100 150 200 300 400 500 600 700 700		ft height (ug/m³)/(lb/hr)	40 ft height 3 _{houry} (μg/m³)/(lb/hr) 26 26 26 26 26 26 26 26 26 26	50 ft height G _{houry} (µg/m³//(lb/hr) 25 25 25 25 25 25 25 25 25	60 ft height G _{hoafy} (µg/m³)/(lb/hr) 23 23 23 23 23 23 23 23 23
(ft) 50 100 150 200 300 400 500 600 700		ft height uny (µg/m²)/(lb/hr)	10 ft height 26 26 26 26 26 26 26 26 26 26 26 26 26	50 ft height G _{Iourly} (μg/m³)/(lb/hr) 25 25 25 25 25 25 25 25 25 25	60 ft height G _{hourly} (µg/m²)/(lb/hr) 23 23 23 23 23 23 23 23 23 23
(ft) 50 100 150 200 300 400 600 700		uny (ug/m³)/(lb/hr)	Shoury (µg/m³)/(lb/hr) 26 26 26 26 26 26 26 26 26	G _{hourly} (μg/m³//(lb/hr) 25 25 25 25 25 25 25 25 25	G _{hoarly} (µg/m³)/(lb/hr) 23 23 23 23 23 23 23 23 23
50 100 150 200 300 400 500 600 700	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		26 26 26 26 26 26 26 26 26 26 26 26 26 2	25 25 25 25 25 25 25	23 23 23 23 23 23 23
100 150 200 300 400 500 600	84 84 84 84 84 84 84 84 84 84 84 84 84 8		96 97 98 98 98 98 98	25 25 25 25 25 25	23 23 23 23 23 23
	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		26 26 26 26 26 26	25 25 25 25 25	23 23 23 23 23 23 23 23 23 23 23 23 23 2
200 300 400 500 600 700	\$\frac{1}{2}\$		92	25 25 25 25	23 23 23 23 23 23 23 23 23 23 23 23 23 2
300 400 500 600 700	\$4 \$4 \$4 \$4		26	25 25 25	23 23 23
400 500 600 700	84 84 84		96	25 25	23 23
500	43		26	25	23
009	43		92		CU
700				25	23
	43		26	25	23
800	43		26	25	23
900 45	43		26	25	23
1000	43		26	25	23
1100 42	41		25	24	23
1200 40	40		24	24	22
1300 38	38		23	23	21
1400 36	98		23	21	21
1500 34	34		23	21	20
1600 32	32		22	21	20
1700 31	31		22	21	20
1800 29	29		22	20	20
1900 28	28		22	20	20
2000 26	26		21	20	19
2100 25	25		21	20	19
2200 24	24		20	20	19

Table 3: Flares and Thermal Destruction Devices (continued)	struction Devices (continued)				
Generic Modeling Results					
Distance	20 ft height	30 ft height	40 ft height	50 ft height	60 ft height
(ft)	G _{nouty} (µg/m³)/(lb/hr)	G _{nourly} (µg/m³)/(lb/hr)	G _{rouny} (µg/m³)/(lb/hr)	G _{nouny} (µg/m³)/(lb/hr)	G _{nouny} (µg/m³)/(lb/hr)
2300	23	23	20	19	19
2400	22	22	20	19	18
2500	22	22	19	18	18
2600	21	21	19	18	17
2700	20	20	18	17	17
2800	19	19	18	17	16
2900	19	19	17	16	16
3000	18	18	17	16	16
3500	16	16	15	14	14
4000	14	14	13	12	12
4500	13	13	12	11	11
5000	11	11	11	10	10
5500	11	11	10	6	6

Table 4: Blowdowns, Purging, an	Table 4: Blowdowns, Purging, and Pigging Generic Modeling Results	lts			
Distance	< 30 psig; 3 ft height	< 30 psig; 10 ft height	< 30 psig; 20 ft height	≥30 psig; 6 ft height	≥ 30 psig; 10 ft height
(ft)	$G_{howty}(\mu g/m^3)/(lb/hr)$	$G_{\rm howly}(\mu g/m^3)/(lb/hr)$	$G_{\rm hourly} (\mu g/m^3)/(1b/hr)$	G_{hourly} ($\mu g/m^3$)/(lb/hr)	G_{howty} ($\mu g/m^3$)/(lb/hr)
50	4304	791	244	51	25
100	4304	791	244	51	25
150	4250	777	244	51	25
200	3621	763	244	51	25
300	2367	750	225	51	25
400	1607	737	225	51	25
200	1156	671	224	51	25
009	871	581	218	48	25
700	682	498	212	44	25
800	155	427	210	40	24
006	456	368	204	36	23
1000	384	320	194	33	21
1100	328	281	182	30	20
1200	284	248	170	28	18
1300	249	221	159	27	17
1400	220	198	147	27	16
1500	196	178	137	27	15
1600	176	162	127	27	14
1700	159	147	118	27	13
1800	145	135	110	27	13
1900	132	124	103	27	13
2000	121	114	96	27	13
2100	112	106	96	27	13
2200	103	98	85	27	13
2300	96	91	80	27	13

Table 4: Blowdowns, Purging, and Pigging Generic Modeling Results Table

Table 4: Blowdowns, Purging, an	Table 4: Blowdowns, Purging, and Pigging Generic Modeling Results (continued)	Its (continued)			
Distance	< 30 psig; 3 ft height	< 30 psig; 10 ft height	< 30 psig; 20 ft height	> 30 psig; 6 ft height	\geq 30 psig; 10 ft height
(ft)	G_{howty} ($\mu g/m^3$)/(lb/lnr)	G_{howty} ($\mu g/m^3$)/(lb/ln)	$G_{\rm howly}(\mu g/m^3)/(lb/hr)$	G_{hourly} ($\mu g/m^3$)/(lb/hr)	$G_{hourly} (\mu g/m^3)/(1b/hr)$
2400	06	98	75	27	13
2500	84	81	71	27	13
2600	79	76	68	27	13
2700	74	72	64	26	13
2800	70	89	61	26	13
2900	29	64	58	97	13
3000	63	61	55	25	13
3500	50	48	45	23	13
4000	40	39	37	21	13
4500	34	33	31	19	13
5000	29	28	27	17	12
5500	25	24	23	16	11

Generic Mod	Generic Modeling Results										
Distance	8 ft height	10 ft height	12 ft height	14 ft height	16 ft height	18 ft height	20 ft height	25 ft height	30 ft height	35 ft height	40 ft height
(ft)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{houty} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)							
50	26	85	83	81	81	71	58	44	43	36	26
100	26	85	83	81	81	71	58	44	43	36	26
150	26	85	83	81	81	71	89	44	43	36	26
200	93	85	83	81	81	71	89	44	43	36	26
300	92	85	83	81	81	71	28	44	43	36	26
400	91	85	83	81	81	71	58	44	43	36	26
500	88	85	83	81	81	71	58	44	43	36	26
009	80	79	78	78	78	70	99	44	43	36	26
700	78	22	92	92	71	89	52	44	43	36	26
800	76	75	74	74	64	63	47	44	43	36	26
006	74	73	72	72	58	58	45	44	43	36	26
1000	72	71	7.1	71	53	53	44	43	43	36	26
1100	69	69	69	69	49	49	42	42	41	35	25
1200	99	66	99	65	45	45	40	40	40	35	24
1300	62	62	62	62	42	42	38	38	38	33	23
1400	59	59	59	59	39	39	36	36	36	32	23
1500	56	56	56	56	37	37	34	34	34	30	23
1600	53	53	53	53	35	35	32	32	32	29	22
1700	50	50	50	50	33	33	31	31	31	28	22
1800	48	48	48	48	31	31	29	29	29	26	22
1900	46	46	46	46	30	30	28	28	28	25	22
2000	44	44	44	44	28	28	26	26	26	24	21

Table 5A Engir	nes Less Than or	Table 5A Engines Less Than or Equal to 250 hp (continued)	(continued)								
Generic Modeling Results	ling Results										
(tt)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{houty} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m²)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)
2100	42	42	42	42	27	27	25	25	25	23	21
2200	40	40	40	40	56	56	24	24	24	22	20
2300	38	38	38	38	25	25	23	23	23	21	20
2400	37	37	37	37	24	24	22	22	22	20	20
2500	36	36	36	98	23	23	22	22	22	20	19
2600	34	34	34	34	22	22	21	21	21	19	19
2700	33	33	33	33	21	21	20	20	20	18	18
2800	32	32	32	32	21	21	19	19	19	18	18
2900	31	31	31	31	20	20	19	19	19	17	17
3000	30	30	30	30	19	19	18	18	18	17	17
3500	26	26	26	56	17	11	16	16	16	15	15
4000	23	23	23	23	15	15	14	14	14	13	13
4500	21	21	21	21	13	13	13	13	13	12	12
5000	19	19	19	19	12	12	11	11	11	11	11
5500	17	17	17	17	11	11	11	11	11	10	10

Table 5B: Engines Greater Than 250 and Less Than or Equal to 500 hp

	200										
Table 5B: Engi	Table 5B: Engines Greater Than 250 and Less Than or Equal to 500 hp	50 and Less Than	or Equal to 500 hp								
Generic Modeling Results	ing Results										
Distance	8 ft height	10 ft height	12 ft height	14 ft height	16 ft height	18 ft height	20 ft height	25 ft height	30 ft height	35 ft height	40 ft height
(ft)	$\frac{G_{\rm hourly}}{(\mu g/m^3)/(lb/hr)}$	G _{hourly} (μg/m³)/(lb/hr)	G _{hourly} (μg/m³)/(lb/hr)	G _{hourly} (μg/m³)/(lb/hr)	$G_{\rm nourb}$ $(\mu g/m^3)/(lb/hr)$	$\frac{G_{\rm bourly}}{(\mu g/m^3)/(lb/hr)}$	G_{hourty} $(\mu g/m^3)/(lb/hr)$	G _{bourly} (μg/m³)/(lb/hr)	G _{hourly} (μg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (μg/m³)/(lb/hr)
50	09	59	54	43	43	34	34	24	21	20	17
100	09	59	54	43	43	34	34	24	21	20	17
150	09	59	54	43	43	34	34	24	21	20	17
200	09	59	54	43	43	34	34	24	21	20	17
300	09	59	54	43	43	34	34	24	21	20	17
400	09	59	54	43	43	34	34	24	21	20	17
500	09	59	54	43	43	34	34	24	21	20	17
009	57	57	52	41	41	34	34	24	21	20	17
700	52	52	47	38	38	31	31	24	21	20	17
800	47	47	43	34	34	28	28	24	21	20	17
006	42	42	39	31	31	26	26	23	20	20	17
1000	39	39	35	28	28	23	23	21	20	20	17
1100	37	36	32	26	26	23	23	20	20	19	17
1200	35	35	30	25	24	23	23	20	20	18	17
1300	34	34	28	24	23	23	23	20	20	18	16
1400	32	32	26	24	23	23	23	20	20	17	16
1500	31	31	24	23	23	23	23	20	20	16	16
1600	29	29	23	23	23	23	23	19	19	16	16
1700	28	28	23	23	23	23	22	19	61	16	15
1800	27	27	22	22	22	22	22	19	61	16	15
1900	25	25	22	22	22	21	21	18	18	16	15
2000	24	24	22	22	22	21	21	17	17	16	15
2100	23	23	21	21	21	20	20	17	17	16	15

Table 5B: Engir	nes Greater Than 2.	50 and Less Than o	Table 5B: Engines Greater Than 250 and Less Than or Equal to 500 hp (continued)	continued)							
Generic Modeling Results	ng Results										
Distance	8 ft height	10 ft height	12 ft height	14 ft height	16 ft height	18 ft height	20 ft height	25 ft height	30 ft height	35 ft height	40 ft height
(ft)	$\frac{G_{\rm hourly}}{(\mu g/m^3)/(1b/hr)}$	$G_{\rm hourly}$ $(\mu g/m^3)/(lb/hr)$	G _{bourly} (µg/m³)/(lb/hr)	$\frac{G_{\mathrm{howty}}}{(\mu g/m^3)/(lb/hr)}$	G _{lourly} (µg/m³)/(lb/hr)	G_{howth} $(\mu \mathrm{g/m}^3)/(\mathrm{lb/hr})$	$\frac{G_{\rm hourly}}{(\mu g/m^3)/(lb/hr)}$	$G_{\text{how-ly}}$ $(\mu g/\text{m}^3)/(\text{lb/hr})$	G _{hourly} (μg/m³)/(lb/hr)	$\frac{G_{\mathrm{hourly}}}{(\mu g'm^3)/(lb/hr)}$	G_{bourly} $(\mu g/\mathrm{m}^3)/(1\mathrm{b/hr})$
2200	22	22	21	21	21	19	19	17	17	15	15
2300	21	21	20	20	20	19	19	17	16	15	14
2400	21	21	20	20	20	19	18	16	16	15	14
2500	20	20	61	19	19	18	18	16	16	14	14
2600	19	61	19	19	61	18	17	16	16	14	13
2700	18	18	18	18	18	17	17	15	15	14	13
2800	18	18	18	18	18	17	16	15	15	13	13
2900	17	17	17	17	17	16	16	15	15	13	13
3000	17	17	17	17	17	16	15	15	15	13	13
3500	15	15	15	15	15	14	14	13	13	12	11
4000	13	13	13	13	13	13	12	12	12	11	10
4500	12	12	12	12	12	11	11	10	10	10	9
5000	11	11	11	11	11	10	10	10	10	9	6
5500	10	10	01	10	10	6	6	6	6	8	8

Table 5C: Engines Greater Than 500 and Eess Than of Equal to 1,000 in											
Generic Modeling Results	Results										
Distance	8 ft height	10 ft height	12 ft height	14 ft height	16 ft height	18 ft height	20 ft height	25 ft height	30 ft height	35 ft height	40 ft height
(ft)	$\frac{G_{hourly}}{(\mu g/m^3)/(lb/hr)}$	G _{hourly} (µg/m³)/(lb/hr)	Ghourty (µg/m³)/(lb/lnr)	$\frac{G_{\rm hourly}}{(\mu g/m^3)/(lb/hr)}$	$\frac{G_{\rm hourly}}{(\mu g/m^3)/(1b/hr)}$	$\frac{G_{\rm hourly}}{(\mu g/m^3)/(1b/hr)}$	$\frac{G_{\rm hourly}}{(\mu g/m^3)/(lb/hr)}$	$\frac{G_{\rm hourly}}{(\mu g/m^3)/(1b/hr)}$	$\frac{G_{\rm ho:uty}}{(\mu g/m^3)/(1b/hr)}$	$G_{\rm hourly} \over (\mu g/m^3)/(lb/hr)$	$G_{\rm hourly} = (\mu g/m^3)/(1b/hr)$
50	26	25	25	25	18	18	17	13	11	11	10
100	26	25	25	25	18	18	17	13	11	11	10
150	26	25	25	25	18	18	17	13	11	11	10
200	26	25	25	25	18	18	17	13	11	11	10
300	26	25	25	25	18	18	17	13	11	11	10
400	26	25	25	25	18	18	17	13	11	11	10
200	26	25	25	25	18	18	17	13	11	11	10
009	26	25	25	25	18	18	17	13	11	11	10
00Z 6-20	26	25	25	25	18	18	17	13	11	11	10
800	24	24	24	24	18	18	17	13	11	11	10
006	23	23	23	23	18	18	17	13	11	11	10
1000	21	21	21	21	17	17	17	13	11	11	10
1100	20	20	20	20	17	17	16	13	11	11	10
1200	18	18	18	18	16	91	16	12	1.1	111	10
1300	17	17	17	17	15	15	15	12	11	10	10
1400	17	17	17	17	14	14	14	11	11	10	10
1500	17	17	16	16	13	13	13	11	11	10	6
1600	17	17	16	16	13	13	13	11	11	10	6
1700	16	16	15	15	13	12	12	11	11	6	6
1800	16	16	15	15	13	12	12	11	11	6	6
1900	15	15	14	14	13	12	12	11	10	6	6
2000	15	15	14	14	13	12	12	11	10	6	6

Table 5C: Engines Greater Than 500 and Less Than or Equal to 1,000 hp (continued)	Greater Than 50	00 and Less Than	or Equal to 1,00	0 hp (continued)							
Generic Modeling Results	Results										
Distance	8 ft height	10 ft height	12 ft height	14 ft height	16 ft height	18 ft height	20 ft height	25 ft height	30 ft height	35 ft height	40 ft height
(ft)	$\frac{G_{\rm Isourly}}{(\mu g/m^3)/(lb/hr)}$	$\frac{G_{lourly}}{(\mu g/m^3)'(lb/hr)} \left \frac{G_{lourly}}{(\mu g/m^3)'(lb/hr)} \right \frac{G_{lourly}}{(\mu g/m^3)'(lb/hr)}$		$\frac{G_{\rm hourly}}{(\mu g/m^3)/(1b/hr)}$	$\frac{G_{\mathrm{lourity}}}{(\mu g/m^3)/(1b/\mathrm{hr})}$	$\frac{G_{\rm hourly}}{(\mu g/m^3)/(1b/hr)}$	$\frac{G_{hourity}}{(\mu g/m^3)/(lb/hr)}$	$\frac{G_{hourty}}{(\mu g/m^3)/(lb/hr)}$	$G_{\rm ho, uly} \\ (\mu g/m^3)/(1b/hr)$	$G_{\rm laourly} \\ (\mu g/m^3)/(lb/hr)$	$\frac{G_{laoutly}}{(\mu g/m^3)/(lb/hr)}$
2100	14	14	13	13	12	12	12	11	10	6	6
2200	14	14	13	13	12	12	12	10	10	6	6
2300	13	13	12	12	12	11	111	10	10	6	8
2400	13	13	12	12	12	11	111	01	6	6	8
2500	12	12	12	12	11	11	11	10	6	6	8
2600	12	12	11	11	111	111	11	10	6	6	8
2700	12	12	11	11	11	10	10	10	6	8	8
2800	11	11	11	11	11	10	10	6	6	8	8
2900	11	11	10	10	10	10	10	6	6	8	8
3000	11	11	10	10	10	10	10	6	6	8	8
3500	6	6	9	6	6	6	9	8	8	7	7
4000	8	8	8	8	8	8	8	7	7	7	9
4500	7	7	7	7	7	7	7	7	9	9	9
2000	7	7	7	7	9	9	6	9	9	9	5
5500	9	9	9	9	9	9	6	9	5	5	5

10 ft height G _{houty} (µg/m³)/(lb/hr 13 13 13 13 13 11 11 11 11 11 11 11 11	12 ft height r G _{houty} (12 12 12 12 12 12 12 12 12 11 11 11 11 1	14 ft height Ghouty (µg/m³)/(lb/hr) 10 10 10 10 10 10 10 10 10 10 10 10 10	16 ft height Ghouty (µg/m³)/(lb/hr) 10 10 10 10 10 10 10 10 10 10 10 10 10	18 ft height Ghouty (µg/m³)/(lb/hr 10 10 10 10 10 10 10 10 10 10 10 10 10	20 ft height Ghoury (µg/m³)/(lb/hr) 10 10 10 10 10 10 10 10 10 10 10 10 10	25 ft height Growty (µg/m³)/(lb/hr) 9 9 9 9 9 9 9 9 9 8 8	30 ft height Grouny (µg/m³)/(lb/hr) 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	35 ft height Ghouty (µg/m³)/(lb/hr) 8 8 8 8 8 7 7	40 ft ha Ghourly (µg/m³) 7 7 7 7 7 7 7 7 7 7 7 7 7
9 9		10	8 0	& (8 (& (∞ «	7	9 (
5 5		10	88 8	ω α	80 80	80 00	∞ α	7	9 9
10		10	8	8	&	80	8	7	9
_									

Table 5D: Engines Greater Than 1,000 and Less Than or Equal to 1,500	s Greater Than	1,000 and Les	s Than or Equal		hp (continued)						
Generic Modeling Results	y Results										
Distance	8 ft height	10 ft height	12 ft height	14 ft height	16 ft height	18 ft height	20 ft height	25 ft height	30 ft height	35 ft height	40 ft height
(ft)	G _{louty} (µg/m³)/(lb/hr)	G _{houny} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourty} (µg/m³)/(lb/hr)	G _{nourly} (µg/m³)/(lb/hr)	G _{hourly} (μg/m³)/(lb/hr)	G _{hourb} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)
2000	10	6	6	6	8	8	8	2	7	2	9
2100	10	6	6	6	8	8	8	7	7	9	9
2200	10	6	6	6	8	8	8	2	2	9	9
2300	6	6	8	8	8	8	8	2	7	9	9
2400	6	6	8	8	2	2	2	2	2	9	9
2500	6	8	8	8	2	2	2	2	9	9	5
2600	8	8	8	8	7	2	2	7	9	9	5
2700	8	8	8	8	7	2	2	7	9	9	5
2800	8	8	7	7	7	7	2	9	9	9	5
2900	8	7	7	2	7	2	2	9	9	9	5
3000	7	7	7	7	7	7	6	6	9	5	5
3500	7	9	9	9	9	9	9	9	5	5	5
4000	9	9	9	9	5	5	5	5	5	4	4
4500	5	5	5	5	5	5	5	5	4	4	4
2000	5	5	5	5	5	5	4	4	4	4	4
2500	5	4	4	4	4	4	4	4	4	4	3

G_{hourly} (μg/m³)/(lb/hr) 30 ft height 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 5 2 2 2 2 G_{hourly} (µg/m³)/(lb/hr 25 ft height 9 9 G_{hourly} (µg/m³)/(lb/hr) 20 ft height G_{hourly} (µg/m³)/(lb/hr) 18 ft height G_{hourly} (µg/m³)/(lb/hr) 16 ft height Table 5E: Engines Greater Than 1,500 and Less Than or Equal to 2,000 hp ∞ ∞ G_{hourly} (µg/m³)/(lb/hr) 14 ft height Table 5E: Engines Greater Than 1,500 and Less Than or Equal to 2,000 hp ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ G_{hourly} (µg/m³)/(lb/hr) 12 ft height ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ G_{hourly} (µg/m³)/(lb/hr) 10 ft height 6 ∞ ∞ ∞ ∞ ∞ G_{hourly} (µg/m³)/(lb/hr) 8 ft height Generic Modeling Results 5 5 5 5 5 10 5 5 6 တ 6 6 6 ∞ ∞ ∞ ∞ ∞ ∞ ∞ Distance 1000 1100 1200 1300 1600 1400 1500 1700 1800 1900 2000 200 300 400 500 800 006 100 150 009 700 € 20

G_{hourly} (µg/m³)/(lb/ hr)

G_{hourly} (µg/m³)/(lb/hr

5 5 5 2 2 2 2 2 2 2 2 2 2 2 2 5 2 2 5 2

2

2

2 5 2 2 2 5

2 2 2 2 2 5

2

2

2 2

40 ft height

35 ft height

Generic Modeling Results Distance 8 ft height Ghoury (ft) (µg/m³)/(lb/hr)	_									
tance										
	10 ft height	12 ft height	14 ft height	16 ft height	18 ft height	20 ft height	25 ft height	30 ft height	35 ft height	40 ft height
	G _{hourty} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourty} (µg/m³)/(lb/hr)	G _{hourty} (µg/m³)/(lb/hr)	G _{houny} (µg/m³)/(lb/hr)	G _{hourty} (µg/m³)/(lb/ hr)				
2100 7	2	9	9	9	9	9	9	5	5	5
2200 7	2	9	9	9	9	9	9	5	5	4
2300	2	9	9	9	9	9	9	5	5	4
2400 7	2	9	9	9	9	9	5	5	5	4
2500 6	9	9	9	9	9	9	5	5	4	4
2600 6	9	9	9	9	9	5	5	5	4	4
2700 6	9	9	9	9	5	5	5	5	4	4
2800 6	9	9	9	5	5	5	5	4	4	4
2900 6	9	5	9	5	5	5	5	4	4	4
9 0008	5	5	9	5	5	5	5	4	4	4
3500 5	5	5	9	5	4	4	4	4	4	3
4000	4	4	4	4	4	4	4	4	3	3
4500 4	4	4	4	4	4	4	3	3	3	3
5000 4	4	4	3	3	3	3	3	3	3	3
5500	3	3	3	3	3	3	3	3	3	3

Table 5F: Engines Greater Than 2,000 hp Table 5F: Engines Greater Than 2,000 hp	Lable 5F: Engines Greater Than 2,000 hp	30 hp									
Generic Modeling Results	g Results										
Distance	8 ft height	10 ft height	12 ft height	14 ft height	16 ft height	18 ft height	20 ft height	25 ft height	30 ft height	35 ft height	40 ft height
(ft)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourty} (µg/m³)/(lb/hr)	G _{hourly} (μg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/ hr)
20	2	9	9	9	5	5	5	5	4	4	4
100	2	9	9	9	5	5	5	5	4	4	4
150	2	9	9	9	5	5	5	5	4	4	4
200	2	9	9	9	5	5	5	5	4	4	4
300	7	9	9	9	5	5	5	5	4	4	4
400	7	9	9	9	5	5	5	5	4	4	4
200	2	9	9	9	5	5	5	5	4	4	4
009	7	9	9	9	5	5	5	5	4	4	4
700	7	9	9	9	5	5	5	5	4	4	4
800	9	9	9	9	5	5	5	5	4	4	4
006	9	9	9	9	5	5	5	5	4	4	4
1000	9	9	9	9	5	5	5	5	4	4	4
1100	9	9	9	9	5	5	5	5	4	4	4
1200	6	9	9	9	5	5	5	5	4	4	4
1300	9	9	9	9	5	5	5	5	4	4	4
1400	6	9	9	9	5	5	5	5	4	4	4
1500	6	9	9	9	5	5	5	5	4	4	4
1600	9	9	9	9	5	5	5	5	4	4	4
1700	6	9	9	6	5	5	5	5	4	4	4
1800	6	9	9	9	5	5	5	5	4	4	4
1900	9	9	9	5	5	5	5	5	4	4	4
2000	9	9	9	5	5	5	5	5	4	4	3

Table 5F: Engines	Table 5F: Engines Greater Than 2,000 hp (continued)	00 hp (continued									
Generic Modeling Results	Results										
Distance	8 ft height	10 ft height	12 ft height	14 ft height	16 ft height	18 ft height	20 ft height	25 ft height	30 ft height	35 ft height	40 ft height
(ft)	G _{houry} (µg/m³)/(lb/hr)	G _{hourty} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{nourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/hr)	G _{houny} (µg/m³)/(lb/hr)	G _{hourly} (µg/m³)/(lb/ hr)
2100	5	5	5	5	5	2	5	5	4	4	3
2200	5	5	2	5	5	2	5	4	4	4	8
2300	5	2	2	2	5	2	4	4	4	4	3
2400	5	5	5	5	5	5	4	4	4	4	3
2500	5	5	5	9	4	4	4	4	4	4	3
2600	5	5	5	9	4	4	4	4	4	3	3
2700	2	2	2	9	4	4	4	4	4	3	3
2800	5	5	5	4	4	4	4	4	4	3	3
2900	4	4	4	4	4	4	4	4	4	3	3
3000	4	4	4	4	4	4	4	4	3	3	3
3500	4	4	4	4	4	4	3	3	3	3	3
4000	3	3	3	3	3	3	3	3	3	3	3
4500	3	3	3	3	3	3	3	3	3	2	2
5000	3	3	3	3	3	3	3	2	2	2	2
5500	3	3	3	3	3	2	2	2	2	2	2

Page 34 of 56

Table 6 Engine and Turbine Emission and Operational Standards

F	5		WO CALL LA	V.1. (110.) 000	CT THE YOUR
Engine Type	Engme Size	Manufacture Date	INOX (g/bnp-nr)	CO (g/pnp-nr)	VOC (g/bnp-nr)
Rich Burn,	less than 100 hp	All dates	no standard	no standard	no standard
Non-emergency, Spark-ignited	greater than or equal to 100 hp	Before January 1, 2011	2	3	no standard
	greater than or equal to 100 hp	After January 1, 2011	1	3	1
	After January 1, 2015, re regardless of manufacturu spark ignited rich burn en standard permit holder sh right to re-evaluate the ut	After January 1, 2015, regardless of manufacture date, no rich burn engine greater than or equal to 240 hp authorized by this permit shall emit NOx in excess of 0.5 g/bhp-hr. After January 1, 2018, regardless of manufacture date, no rich burn engine greater than or equal to 100 hp authorized by this permit shall emit NOx in excess of 0.5 g/bhp-hr. If an authorization or authorizations is issued for a spark ignited rich burn engine under this standard permit after the applicable date of January 1, 2015 or January 1, 2018, NOx emissions from that engine shall not exceed 0.5 g/bhp-hr, except that the standard permit holder shall have a one year grace period from the date of the initial authorization under this standard permit to comply with the limit of 0.5 g/bhp-hr for NOx. The commission reserves the right to re-evaluate the upgrade requirement if EPA promulgates any standards for existing engines.	r equal to 240 hp authorized by this permit shall emit NOx in erized by this permit shall emit NOx in excess of 0.5 g/bhp-hr. If ary 1, 2015 or January 1, 2018, NOx emissions from that engit orization under this standard permit to comply with the limit of gengines.	xcess of 0.5 g/bhp-hr. Afte an authorization or authon the shall not exceed 0.5 g/bl 0.5 g/bhp-hr for NOx. Th	r January 1, 2018, rizations is issued for a pp-lr, except that the e commission reserves the
Lean Burn, 2SLB	less than 500 hp	All dates	no standard	no standard	no standard
Non-emergency, Spark-ignited	greater than or equal to	Before September 23, 1982	8	3	no standard
	du noc	Before June 18, 1992 and rated less than 825 hp	8	3	no standard
		After September 23, 1982, but prior to June 18, 1992 and rated 825 hp or greater	5	3	no standard
		After June 18, 1992 but prior to July 1, 2010	2.0 except under reduced speed, $80\mbox{-}100\%$ of full torque conditions may be 5.0	3	no standard
		On or after July 1, 2010	1	3	1
Lean Burn, 4SLB,	less than 500 hp	Before July 1, 2008	no standard	no standard	no standard
Non-emergency, Spark-ignited, and		On or after July 1, 2008	2	3	1
Dual-fuel	greater than or equal to 500 hp	Before September 23, 1982	5.0 except under reduced speed, $80100%$ of full torque conditions may be 8.0	3	no standard
		Before June 18, 1992 and rated less than 825 hp	5.0 except under reduced speed, $80100%$ of full torque conditions may be 8.0	3	no standard
		After September 23, 1982, but prior to June 18, 1992 and rated 825 hp or greater	5	3	no standard
		After June 18, 1992 but prior to July 1, 2010	2.0 except under reduced speed, $80\mbox{-}100\%$ of full torque conditions, may be 5.0	3	no standard
		On or after July 1, 2010	1	3	1
	After January 1, 2020, no standard permit authoriza 1, 2015. However, if the gas standard permit to co	After January 1, 2020, no spark ignited 4-stroke lean burn engine authorized by this standard permit that existed on-site on January 1, 2012, shall emit NOx in excess of 2.0 g/bhp-hr. If an oil and gas standard permit authorization or authorizations are is issued for a spark ignited 4-stroke lean burn engine after January 1, 2012, NOx emissions from that engine shall not exceed 2.0 g/bhp-hr after January 1, 2015. The standard permit holder shall have a three year grace period from the date of the initial authorization under the oil and gas standard permit to comply with the limit of 2.0 g/bhp-hr for NOx. The commission reserves the right to re-evaluate the upgrade requirement if EPA promulgates any standards for existing engines.	dard permit that existed on-site on January 1, 2012, shall emit Nean burn engine after January 1, 2012, NOx emissions from tha dard permit holder shall have a three year grace period from the serves the right to re-evaluate the upgrade requirement if EPA p	Ox in excess of 2.0 g/bhp t engine shall not exceed 2 atte of the initial authorized monulgates any standards	-hr. If an oil and gas .0 g/bhp-hr after January zation under the oil and for existing engines.
Turbines	Turbines shall not emit ga	Turbines shall not emit greater than 25 ppmvd @ 15% O2 for NOX and 50 ppmvd @ 15% O2 for CO	% O2 for CO.		

Table 7 Sampling and Demonstrations of Compliance

Category	Description	Specifications and Expectations
Exclusions	Control Systems	Control device monitoring and records are required only where the device is necessary for the site to meet emission rate limits
Sampling General	When Applicable Ports & Platforms, Methods, Notifications and Timing	(A)H necessary, sampling ports and platforms shall be incorporated into the design of all exhaust stacks according to the specifications set forth in "Chapter 2, Stack Sampling Pacitites." Engines and other facilities which are physically incapable of having platforms are excluded from this requirement. For control devices with effectiveness requirements only, appropriate sampling ports shall also be installed upstream of the inlet to control devices or control devices with effectiveness requirements. Alternate sampling ports shall also be installed upstream of the inlet to control devices or control devices with control efficiency requirements. Alternate sampling facility designs may be submitted for written approval by the Texas Commission on Environmental Quality (TCEQ) Regional Director or his designee. By Where stack testing is required, Sampling shall be conducted within 180 days of the change that required the registration, in accordance with the appropriate procedures of the TCEQ Sampling Procedures Manual and in accordance with the appropriate EPA Reference Methods. Unless otherwise specified in the applicable standard. Where appropriate, sampling shall occur as three one-hour rest runs and then averaged to demonstrate compliance with the limits of this authorization straing. The region and the spiral bear and the sampling and testing facilities and conducting the sampling and testing operations at his expense. (D) The holder of this authorization is responsible for providing sampling and testing facilities and conducting the sampling and testing operations at his expense. (D) The holder of this authorization is responsible for providing sampling and testing facilities and conducting the sampling, all includes an opportunity for the appropriate regional office to schedule a prefets meeting. The operation is another sampling will occur; (iii) Name of firm conducting sampling; (iv) Type of sampling period; (vii) parameters to be documented during the sampling will occur; (iii) Name of firm conducting
Fugitive monitoring and LDAR	Analyzers	An approved gas analyzer or other approved detection monitoring device used for the volatile organic compound fugitive inspection and repair requirement is a device that conforms to the requirements listed in Title 40 CFR \$60.485(a) and (b), or is otherwise approved by the Environmental Protection Agency as a device to monitor for VOC fugitive emission leaks. Approved gas analyzers shall conform to requirements listed in Method 21 of 40 CFR Part 60, Appendix A. The gas analyzer shall be calibrated with methane. In addition, the response factor of the instrument for a specific VOC of interest shall be determined and meet the requirements of Standard permit 8 of Method 21. If a mixture of VOCs is being monitored, the response factor shall be calibrated with one of the VOC to be measured or any other VOC so long as the instrument has a response factor of less than 10 for each of the VOC to be measured. In lieu of using a hydrocarbon gas analyzer and EPA Method 21, the owner or operator may use the Alternative Work Practice in 40 CFR Part 60, \$60.18(g) - (i). The optical gas imaging instrument must meet all requirements specified in 40 CFR \$60.18(g) - (i), except the annual Test Method 21 requirement in 40 CFR \$60.18(g) ont apply.

Table 7 Sampling and Demonstrations of Compliance (continued)

Category	Description	Specifications and Expectations
Verify composition of materials	All site-specific gas or liquid analyses	Reports necessary to verify composition (including hydrogen sulfide (H ₂ S) at any point in the process. All analyses shall be site specific or a representative sample may be used to estimate emissions if all of the parameters in the gas and liquid analysis protocol provided by the commission are met.
		A site-specific or define representative analysis shall be performed within 90 days of initial start of operation or implementation of a change which requires registration. When new streams are added to the site and the character or composition of the streams change and cause an increase in authorized emissions, or upon request of the appropriate Regional office or local air pollution control program with jurisdiction, a new analysis will need to be performed. Analysis techniques may include, but are not limited to, Gas Chromatography (GC), Tutweiler, stain tube analysis, and sales oil/condensate reports. These records will document the following: (A) H ₂ S content; (B) flow rate; (C) heat content; or (D) other characteristic including, but not limited to: (i) American Petroleum Institute gravity and Reid vapor pressure (RVP); (ii) sales oil throughput; or (iii) condensate throughput.
		Laboratory extended VOC GC analysis at a minimum to C10+ and H ₂ S analysis for gas and liquids for the following shall be performed and used for emission compliance demonstrations:(A) Separator at the inlet; (B) Dehydration Unit / Glycol Contactor prior to dehydrator;(C) Amine Unit prior to sweetening unit; (D) Separator dumping to gunbarrel or storage tank; (E) Tanks for liquids and vapors; or (F) P
Engines & Turbines	Initial Sampling of (i) Any engine greater than 500 horsepower; (ii) Any turbine	Perform stack sampling and other testing as required to establish the actual quantities of air contaminants being emitted into the atmosphere (including but not limited to nitrogen oxide (NO _x), carbon monoxide (CO), and oxygen (O2). Each combustion facility shall be tested at a minimum of 50% of the design maximum firing rate of the facility. Each tested firing rate shall be identified in the sampling report. Sampling shall occur within 180 days after initial start-up of each unit. Additional sampling shall occur as requested by the TCEQ Regional Director. If there are multiple engines at an oil and gas sites (OGS) of identical model, year, and control system, sampling may be performed on 50% of the units and used for compliance demonstration of all identical units at the OGS. The remaining 50% of the units not initially tested must be tested during the next biennial testing period. This sampling is not required upon initial installation at any location if the engine or turbine was previously installed and tested at any location in the United States and the test conformed with EPA Reference Methods. Regardless of engine location, records of performance testing, or relied upon sampling reports, must remain with each specific engine for a minimum of five years unless records are unavailable and the permit holder periorms the initial sampling on-site. No one may claim records are unavailable for the time period in which an engine is at the site which is authorized by this standard permit. This testing is not required testing. If biennial testing is required for production purposes, the biennial testing is required within 30 days after re-starting the engine.

Table 7 Sampling and Demonstrations of Compliance (continued)

Category	Description	Specifications and Expectations
Engines	Periodic Evaluation	The following is applicable to sites with federal operating permits only: (A) For any engine with a NOx standard under Table 6, conduct evaluations of each engine performance quarterly after initial compliance testing by measuring the NO _x and CO content of the exhaust. Tests shall occur more than 30 days apart. Individual engines shall be subject to the quarterly performance evaluation if they were in operation for 1000 hours or more during the quarter period. If an engine is not operating, the permit holder may delay the test until such time as the engine is expected to run for more than fourteen days. Idled engines do not need to be re-started only for the purpose of completing required testing. (B) The use of portable analyzers specifically designed for measuring the concentration of each contaminant in parts per million by volume is acceptable for these evaluations. The portable analyzer shall be operated at minimum in accordance with the manufacturer's instructions. The operator may modify the procedure if it does not negatively alter the accuracy of the analyzer. Also, colorimetric testing (stain tubes) maybe used in these periodic evaluations. The NO, and CO emissions then shall be converted into units of grams per horsepower-hour and pounds per hour. (C) Emissions shall be measured and recorded in the as-found operating condition, except no compliance determination shall be established during start-up, shutdown, or under breakdown conditions. (D) In lieu of the above mentioned periodic monitoring for egines and biennial testing, the holder of this permit may install, calibrate, maintain, and operate a continuous emission monitoring system (CEMS) to measure and record the concentrations of NO _x and CO from any engine, turbine, or other external combustion facility. Diluents to be measured include O ₂ or CO ₂ . Except for system breakdowns, repairs, calibration adjustments, and other quality assurance tests, the Continuous Emission Monitoring Systems (CEMS) shall be neotined as aset out in 40 CFR P
Engines & Turbines	Biemial Testing Any engine greater than 500 horsepower or any turbine	Every two years starting from the completion date of the Initial Compliance Testing, any engine greater than 500 horsepower or any turbine shall be retested according to the procedures of the Initial Compliance Testing. Retesting shall occur within 90 days of the two year amniversary date. If a facility has been operated for less than 2000 hours during the two year period, it may skip the retesting requirement for that period. After biennial testing, any engine retested under the above requirements shall resume periodic evaluations within the next 6 calendar months (January to June or July to December). If biennial testing is required for an engine that is restarted for production purposes, the biennial testing shall be performed within 45 days after re-starting the engine.

Table 7 Sampling and Demonstrations of Compliance (continued)

Category	Description	Specifications and Expectations
Oxidation or Combustion Control Device	Initial Sampling and Monitoring for performance for VOC, Benzene, and H-S	Stack testing, when a company wants to establish efficiencies of 99% or greater, must be coordinated and approved. Sampling is required for VOC, henzene and H ₂ S at Region's discretion. The thermal oxidizer (TO) must have proper monitoring and sampling ports installed in the vent stream and the exit to the combustion chamber, to monitor and test the unit simultaneously.
	,	The temperature and oxygen measurement devices shall reduce the temperature and oxygen concentration readings to an averaging period of 6 minutes or less and record it at that frequency. The temperature measurement device shall be installed, calibrated, and maintained according to accepted practice
		and the maintractures aspective around states and accuracy of the greater of ±0.7.9 % of the temperature being measured expressed in degrees Celsius or =2.5°C.
		The oxygen or carbon monoxide analyzer shall be zeroed and spanned daily and corrective action taken when the 24-hour span drift exceeds two times the amounts specified Performance Specification No. 3 or 4A, 40 CFR Part 60, Appendix B. Zero and span is not required on weekends and plant
		holidays if instrument technicians are not normally scheduled on those days.
		The oxygen or carbon monoxide analyzer shall be quality-assured at least semiamually using cylinder gas audits (CGAs) in accordance with 40 CFR Part 60 Annerdiy F Procedure 1-85-12 with the following excention: a relative accuracy test and it is not remitted once every four marters (i.e., two
		successive semiannual CGAs may be conducted). An equivalent quality-assurance method approved by the TCEQ may also be used. Successive
		semiannual audits shall occur no closer than four months. Necessary corrective action shall be taken for all CGA exceedances of ±15 percent accuracy
		shall be reported to the appropriate TCEQ Regional Director on a quarterly basis, supplemental stack concentration measurements may be required at the discretion of the appropriate TCEQ Regional Director. Quality assured or valid data of oxygen or carbon monoxide analyzer must be generated
		when the TO is operating except during the performance of a daily zero and span check. Loss of valid data due to periods of monitor break down,
		inaccurate data, repair, maintenance, or calibration may be exempted provided it does not exceed 5% of the time (in minutes) that the oxidizer operated over the previous rolling 12 month period. The measurements missed shall be estimated using engineering judgment and the methods used recorded.

Table 8 Monitoring and Records Demonstrations

Category	Description	Record Information
Site Production or Collection	natural gas, oil, condensate, and water production records	Site inlet and outlet gas volume and sulfur concentration, daily gas/liquid production and load-out from tanks
Equipment and facility summary	Current process description	Accurate and detailed plot plan with property line, off-site receptors, and all equipment on-site or drawings with sufficient detail to confirm all authorized facilities to confirm emission estimates, impact review, and registration scope
Equipment specifications	Process units, tanks, vapor recovery systems; flares; thermal oxidizers; and reboiler control devices	A copy of the registration and emission calculations including the fixed equipment sizes or capacities and manufacturer's specifications and programs to maintain performance, with the plan and records for routine inspection, cleaning, repair and replacement.
	Leaks in piping, fugitive components and process vessels	Leaks in piping, fugitive components If a leak has been found and determined that there would be less emissions from the repair by delaying repair until the next shutdown, then a record of and process vessels the calculation showing that the emissions would be less shall be kept.
Physical Inspection	Fugitive Component Check	A record of the component count shall be maintained. A record of the date each quarterly inspection was made and the date components found leaking were repaired or the date of the planned shutdown.

Table 8 Monitoring and Records Demonstrations (continued)

Category	Description	Record Information
Voluntary LDAR Program	Details of fugitive component monitoring plan, and LDAR results, including QA, QC	The following records are required where a company uses an LDAR program to reduce the potential fugitive emissions from the site to meet emission intentions correctly fugitive emissions. (A) A monitoring program plan must be maintained that contains, at a minimum, the following information: (B) an accounting of all the fugitive components by type and service at the site with the total uncourrolled fugitive potential to emit estimate; (B) an accounting of all the fugitive components by type and service at the site with the total uncourrolled fugitive plots, in the distribution of the components at the site with earlied and instrumentation diagram (PID); or (b) a written or electronic database; (iii) the monitoring sachedule for each component at the site with difficult-co-monitor and unsafe-to-monitor component is not considered as the tomoritory within a saledhelf for acach component at the site with difficult-co-monitor and unsafe-to-monitor and as counsafered as the tomoritory within a calcular year, then it shall be monitored as soon as possible during sistence, components where instrument monitoring is used, information elarlying the adequacy of the instrument response; (vi) the plan for hyteraltic or pressure testing or instrument monitoring is used, information elarlying the adequacy of the instrument response; (vi) the plan for hyteraltic or pressure testing or instrument monitoring is used, information elarlying the adequacy of the instrument response; (vi) the plan for hyteraltic or pressure testing or instrument monitoring is used, information and sold of all monitoring instrument calibration. (C) Records must be maintained for all monitoring as used in the purpose of the possible during size of the plan and inspection data at leaking-component and the monitoring to gunst be maintained for all leaks greater than the appointed of component and the monitoring and inspection and all leaks greater than the apportance of 10 plan with 20 (10 plan with 20 plan programe and plan of the plan of 10 plan pra
Minor Changes	Additions, changes or replacement	Records showing all replacements and additions, including summary of emission type and quantities, for a rolling 6-month period of time.
Equipment Replacement	Like-Kind replacement	Records on equipment specifications and operations, including summary of emissions type and quantity.

Table 8 Monitoring and Records Demonstrations (continued)

Category	Description	Record Information
Process Units	Glycol Dehydration Units	For emission estimates, the worst-case combination of parameters resulting in the greatest emission rates must be used. If worst-case parameters are not used, then glycol dehydrator unit monitoring records include dry gas flow rate, absorber pressure and temperature, glycol type, and circulation rate recorded weekly. If worst-case parameters are not used, then in addition to weekly unit monitoring, where control of flash tank or reboiler emissions are required to meet the emission limitations of the section and emissions are certified, the following control monitoring requirements apply weekly: flash tank temperature and pressure, any reboiler stripping gas flow rate, and condenser outlet temperature. VRC, flare, or thermal oxidizer control or reboiler for control must comply with the monitoring and recordkeeping for those devices. Where all emissions from the flash tank and the reboiler or reboiler condenser vent are directed to a VRU, flare, or thermal oxidizer designed to be on-line at all times the glycol dehydrator is in operation, the control system monitoring for the glycol dehydrator is not required.
	Amine Units	Amine units may simply retain site production or inlet gas records if all sulfur compounds in the inlet are assumed to be emitted. Where only partial removal of the inlet sulfur is assumed, for emission estimates, the worst-case combination of parameters resulting in the greatest emission rates must be used. If worst-case parameters are not used, then records of the amine solution, contactor pressure, temperature and pump rate shall be maintained. Where the waste gas is vented to combustion control, the requirements of the control device utilized should be noted.
Boilers, Reboilers, Heater-Treaters, and and Process Heaters	Combustion	Records of Operational Monitoring and Testing Records Records of the hours of operation of every combustion device of any size by the use of a process monitor such as a run time meter, fuel flow meter, or other process variable that indicates a unit is running unless, in the registration for the facility, the emissions from the facility were calculated using full year operation at maximum design capacity in which case no hours of operation records must be kept.
Internal Combustion Engines	Combustion	Records of Appropriate Operational Monitoring and Testing Records Records of the hours of operation of every combustion device and engine of any size by the use of a process monitor such as a run time meter, fuel flow meter, or other process variable that indicates a unit is running. The owner or operator may test and retest at the most frequent intervals identified in Table 7 in lieu of installing a process monitor and recording the hours of operation. If an engine has no testing requirements in Table 7, no records of the hours of operation must be kept. See fuel records below
Gas Fired Turbines	Combustion	Records of Appropriate Operational Monitoring and Testing Records Records of the hours of operation of every turbine greater than 500 hp by the use of a process monitor such as a run time meter, fuel flow meter, or other process variable that indicates a unit is running unless the permit holder determined emissions from the facility assuming full year operation at maximum design capacity in which case no hours of operation records must be kept.
Fuel Records	VOC and Sulfur Content	A fuel flow meter is not required if emissions are based on maximum fuel usage for 8,760 hr/yr. There are no specific requirements for allowable VOC content of fuel. If field gas contains more than 1.5 grains (24 ppmv) of H2S or 30 grains total sulfur compounds per 100 dry standard cubic feet, the operator shall maintain records, including at least quarterly measurements of fuel H2S and total sulfur content, which demonstrate that the annual SO2 emissions do not exceed limitations
Tanks/Vessels	Color/Exterior	Records demonstrating design, inspection, and maintenance of paint color and vessel integrity.
Tanks/Vessels	Emission and emission potential	Maintain a record of the material stored in each tank/vessel that vents to the atmosphere and the maximum vapor pressure used to establish the maximum potential short-term emission rate. Where pressurized liquids can flash in the tank/vessel monitor and record weekly the maximum fluid pressure that can enter the tank / vessel. Records that tank / vessel hatches and relief valves are properly sealed when tank / vessel is directed to control and after loading events (as needed).

Table 8 Monitoring and Records Demonstrations (continued)

Category	Description	Record Information
Truck Loading	All Types	Records indicating type of material loaded, amount transferred, method of transfer, condition of tank truck before loading.
	Vacuum Trucks	Note loading with an air mover or vacuum. No additional record is needed where a vacuum truck uses only an on-board or portable pump to push material into the truck.
	Controlled Loading	Where control is required note the control that is utilized.
Control Devices	Vapor Capture and Recovery	Records of hours of use are required for all units and on-line time must be considered when emission estimates and actual emissions inventories are calculated.
		mVRU Basic Design Function Record: Record demonstrating the unit captures vapor and includes a sensing device set to capture this vapor at peak intervals.
		Additional Design Parameter Record: Record demonstrating additional design parameters are utilized such as additional sensing equipment, a properly designed bypass system, an appropriate gas blanket, an adequate compressor selection, and the ability to vary the drive speed for units utilizing electric driven compressors
		marked compressed. In VRUs that are used at oil and gas sites to control emissions may claim up to 100% control efficiency provided records of basic and additional design functions and parameters of a VRU along with appropriate records listed in Table 8 are satisfied.
		mVRUs may claim up to 99% control efficiency for units where records of basic and additional design functions are satisfied and parameters listed in Table 8 are not satisfied.
		mVRUs may claim up to 95% control efficiency for units where records listed in Table 8 are not satisfied.
		IVRU The record of proper design must be kept to demonstrate how the unit was designed and for what capacity. The record of liquid replacement must be kept, along with the calculations for demonstrating that the VOC to liquid ratio has been maintained. Additionally, the system must be tested to demonstrate the efficiency. This testing needs to be performed and results recorded to receive 95% control efficiency no longer than: vacuum truck emissions: after 20 loads have been pulled through the IVRU, for tanks: Produced Water – Monthly, Crude – Bi-Monthly, Condensate – Weekly. This testing needs to be performed and results recorded to receive 98% control efficiency no longer than: vacuum truck emissions: after 15 loads have been pulled through the IVRU, for tanks: Produced Water – 3 weeks, Crude – 10 days, Condensate – 5 days.
		All valves must be designed and maintained to prevent leaks. All hatches and openings must be properly gasketed and sealed with the unit properly connected.
		Downtime is limited to a rolling 12 month average of 5% or 432 hr/per rolling 12 months and waste vents shall be redirected to an appropriate control device if possible during down time unless otherwise registered for alternate operating hours.

Table 8 Monitoring and Records Demonstrations (continued)

Category	Description	Record Information
Cooling Tower	Design data	Records shall be kept of maximum cooling water circulation rate and basis, maximum total dissolved solids allowed as maintained through blowdown, and towers design drift rate. These records are only required if the cooling system is used to cool process VOC streams or control from drift eliminators or minimizing solids content is needed to meet particulate matter emission limits.
	VOC Leak Monitoring, Maintenance and Repair	Cooling tower heat exchanger systems cooling process VOC streams are assumed to have potential uncontrolled leaks repaired when obviated by process problems. If controlled emissions (systems monitored for leaks) are required to meet emission rate limits then the cooling tower water shall be monitored monthly for VOC leakage from heat exchangers in accordance with the requirements of the TCEQ Sampling Procedures Manual, Appendix P (dated January 2003 or a later edition) or another air stripping method approved by the TCEQ Executive Director. Cooling water VOC concentrations above 0.08 parts per million by volume (ppmv) indicate faulty equipment. Equipment shall be maintained so as to minimize VOC emissions into the cooling water. Faulty equipment shall be repaired at the earliest opportunity but no later than the next scheduled shutdown of the process unit in which the leak occurs. Records must be maintained of all monitoring data and equipment repairs.
	Particulate Monitoring, Maintenance and Repair.	Inspect and record integrity of drift eliminators annually, repairing as necessary. If a maximum solids content must be maintained through blowdowns to meet particulate emission rate limits, cooling water shall be sampled for total dissolved solids (TDS) once a month at prior to any periodic blow downs and maintain records of the monitoring results and all corrective actions.
Planned Maintenance, Starf-up, and Shutdown (MSS)	Alternate Operational Scenarios and Redirection of Vent Streams	Records of redirection of vent streams during primary operational unit or control downtime, including associated alternate controls, releases and compliance with emission limitations.
Planned MSS	Pigging, Purging and Blowdowns	Pigging records, including catcher design, date, emission estimate to atmosphere and to control, and when controlled, the control device. Note where a control device is necessary to meet emission limitations the device is subject to the requirements of standard permit (e) and record requirements of this table. Purging and blowdown records, including the volume and pressure and a description of the piping and equipment involved, the date, emission estimate to atmosphere and to control, and when controlled, the control device. Where purging to control to meet a lower concentration before purging to atmosphere is conducted the concentrations of VOC, BTEX or H2S as appropriate must be measured and recorded prior to purging to atmosphere. Note where a control device is necessary to meet emission limitations the device is subject to the requirements of standard permit (c) and record requirements of this table.
Planned MSS	Temporary Facilities for Bypass, and Degassing and Purging	Temporary facility records, including a description and estimate of potential flugitive emissions from temporary piping, size and design of facilities (eg. tanks or pan volume, fill method, and throughput; engine horse power, fuel and usage time, flare tip area, ignition method, and heating value assurance method; etc.) and the date and emission estimate to atmosphere and to control for their use
Planned MSS	Management of Sludge from Pits, Ponds, Sumps and Water Conveyances	Records including the source identification, removal plan, emission estimate direct to atmosphere and through control. Note where a control device is necessary to meet emission limitations the device is subject to the requirements of standard permit (e) and record requirements of this table.
Plamed MSS	Degassing or Purging of Tanks, Vessels, or Other Facilities	Records including: a) the EPN and description of vessels and equipment degassed or purged; b) the material, volume and pressure (if applicable); c) the volume of purge gas used; d) a description of the piping and equipment involved; e) clarifying estimates for a coated surface or heel; f) the date; g) emission estimate to atmosphere and to control; h) when controlled, the control device; and i) where purging to a control device to reduce concentrations before purging to atmosphere, the concentrations of VOC, BTEX or H ₂ S as appropriate must be measured and recorded prior to purging to atmosphere.

Table 8 Monitoring and Records Demonstrations (continued)

Cotomory	Description	Record Information
Planned MSS	Records	Records or copies of work orders, contracts, or billing by contractors for the following activities shall be kept at the site, or nearest manned site, and made available upon request: Routine engine component maintenance including filter changes, oxygen sensor replacements, compression checks, overhauls, lubricant changes, spark plug changes, and emission control system maintenance; Boiler refractory replacements and cleanings; Heater and heat exchanger cleanings; Turbine hot standard permit swaps; Turbine hot standard permit swaps; Pressure relief valve testing, calibration of analytical equipment; instrumentation/analyzer maintenance; replacement of analyzer filters and screens.
Control Devices	Flare Monitoring	Basic monitoring requires the flare and pilot flame to be continuously monitored by a thermocouple or an infrared monitor. Where an automatic ignition system is employed, the system shall ensure ignition when waste gas is present. The time, date, and duration of any loss of flare, pilot flame, or auto-ignition shall be recorded. Each monitoring device shall be accurate to, and shall be calibrated at a frequency in accordance with, the manufacturer's specifications. A temporary, portable or backup flare used less than 480 hours per year is not required to be monitored. Records of hours of use are required for all units and on-line time must be considered when emission estimates and actual emissions inventories are calculated.
Control Devices	Thermal Oxidation and Vapor Combustion Performance Monitoring Basic	Control device monitoring and records are required only where the device is necessary for the site to meet emission rate limits. Basic monitoring is a thermocouple or infrared monitor that indicates the device is working. Records of hours of use are required for all units and on-line time must be considered when emission estimates and actual emissions inventories are calculated. Information and records include continuously monitoring and recording temperature to insure the control device is working when waste
	Intermediate	gas can be directed to the device and showing compliance with the 1400 degrees Fahrenheit if applicable. Enhanced monitoring requires continuous temperature and oxygen or carbon monoxide monitoring on the exhaust with six minute averages recorded to show compliance with the temperature requirement and the design oxygen range or a CO limit of 100 ppmv. Some indication of waste gas flow to the control device, like a differential pressure, flow monitoring or valve position indicator, must also be continuously recorded, if the flow to the control device can be intermittent.
	Alternate Monitoring	Records of stack testing and the monitored parameters during the testing shall be maintained to allow alternate monitoring parameters and limits.

Table 8 Monitoring and Records Demonstrations (continued)

Category	Description	Record Information
Control Devices	Control with process combustion or heating devices (e.g. reboilers, heaters & firmaces)	Basic monitoring is any continuous monitor that indicates when the flame in the device is on or off (other than partial operational use). The following are effective basic options: a fire box temperature monitor, rising or steady process temperature monitor, CO monitor, primary fuel flow monitor, fire box pressure monitor or equivalent. Enhanced monitoring for 91 to 99% control, where waste gas is not introduced as the primary fuel, must include the following monitoring monitoring for 91 to 99% control, where waste gas is not introduced as the primary fuel, must include the following monitoring where the waste gas may be flowing when the control device is not firing must show continuous disposition of the waste gas streams, including where the waste gas may be flowing used in the flame in the device is on or off (other than partial operational use). The following are effective basic options: a fire box temperature monitor, rising or steady process temperature monitor, primary fuel flow monitor, fire box pressure monitoring for 91 to 99% control, where waste gas is not the primary fuel, must include the following monitors: continuous fire box or fire box exhaust temperature monitoring; and CO and O ₂ monitoring, with at least 6 minute averages recorded. Additionally, enhanced monitoring where the waste gas may be flowing when the control device is not firting must show continuous disposition of the waste gas streams. This includes continuous monitoring of flow or valve position through any potential by-pass to the control where more than 50% run time of the control is claimed.

Table 9 Fugitive Component LDAR BACT Table

		aximum														
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	d. This is referred to as Dry Gas lines in 40 CFR centage less than 4 %, a weighted average Effects and total uncontrolled emissions for all such sources
operating temperature, unless the components are subject to monitoring by other state or federal regulations.	perating temperature, unless the components are subject to monitoring by other state or federal regulations.	perating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.			
operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.			
perating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	perating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.	operating temperature, unless the components are subject to monitoring by other state or federal regulations.			
on components which are aggregate partial presented by other state or federal regulations.	on components which are aggregate partial presented by other state or federal regulations.	on components which are aggregate partial presented by other state or federal regulations.	on components which are aggregate partial presented in very presented in the result of	on components which are aggregate partial presented in the presented of th	on components while the components are subject to monitoring by other state or federal regulations.	on components while the components are subject to monitoring by other state or federal regulations.	on components which are aggregate partern pressure to report pressure to the state of federal regulations.	on components which are aggregate partoar pressure to report pressure to be a state or federal regulations.	on components which are aggregate partoar pressure to report pressure to be a state or federal regulations.	on components while the components are subject to monitoring by other state or federal regulations.	on components which are aggregate partial presents of vapor presents to monitoring by other state or federal regulations.	on components which are aggregate partial presented in very presented in the result of	on components which are aggregate partial presented by other state or federal regulations.			
on components where the aggregate partial pressure of vapor pressure, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure of vapor pressure, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure of vapor pressure is less than 1907 F of at maximum paperating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.2 psia at 100 F of at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is test upon a new treatment of the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure of vapor pressure is less than 1500 F of an maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure of vapor pressure is less than 1500 F of an maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.2 point at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is tess train to be a maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is tess train to be a maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure of vapor pressure is less than 1500 F of an maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 100 from an maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure of vapor pressure is less than 1.00 F of an maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partian pressure or vapor pressure for vapor pressure for vapor pressure for vapor pressure or vapor pressure or vapor pressure, unless the components are subject to monitoring by other state or federal regulations.			
on components where the aggregate partial pressure or vapor pressure is less than 0.2 psia at 100 r or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.2 psia at 100 r or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.2 psta at 100 r or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.2 psia at 100 r or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.2 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.2 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.2 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.2 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.2 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.2 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.2 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partual pressure or vapor pressure is less train 0.5 psia at 100 f or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.2 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less train 0.5 psia at 100 f or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.			
on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources < 25 tpy, instrument monitoring is not	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources < 25 tpy, instrument monitoring is not	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources < 25 tpy, instrument monitoring is not
on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum aperating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 paia at 100 F or at maximum perature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 paia at 100 F or at maximum apperating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 paia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 paia at 100 F or at maximum apperating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum aperating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum aperating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum sperating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum operating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum operating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum aperating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 paia at 100 F or at maximum apperating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 paia at 100 F or at maximum apperating temperature, unless the components are subject to monitoring by other state or federal regulations.	on components where the aggregate partial pressure or vapor pressure is less than 0.5 psia at 100 F or at maximum perating temperature, unless the components are subject to monitoring by other state or federal regulations.	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources < 25 try, instrument monitoring is not	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources 4.5 try, instrument monitoring is not	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources 4.25 try, instrument monitoring is not
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	Is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4%; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4%; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4%; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects uncontrolled emissions for all such sources
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects moorteed lad aminima for all not convent	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects
														is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects
														is referred to as Dry Gas lines in 40 CFR less than 4%; a weighted average Effects	is referred to as Dry Gas lines in 40 CFR less than 4 %; a weighted average Effects	is referred to as Dry Gas lines in 40 CFR less than 4%; a weighted average Effects
														is referred to as Dry Gas lines in 40 CFR less than 4 %: a weighted average Effects	is referred to as Dry Gas lines in 40 CFR less than 4 %: a weighted average Effects	is referred to as Dry Gas lines in 40 CFR less than 4 %: a weighted average Effects
														is referred to as Dry Gas lines in 40 CFR	is referred to as Dry Gas lines in 40 CFR	s referred to as Dry Gas lines in 40 CFR
														is referred to as Dry Gas lines in 40 CFR	is referred to as Dry Gas lines in 40 CFR	is referred to as Dry Gas lines in 40 CFR
														is referred to as Dry Gas lines in 40 CFR	is referred to as Dry Gas lines in 40 CFR	is referred to as Dry Gas lines in 40 CFR
														is referred to as Dry Gas lines in 40 CRP	referred to so Dry Gas lines in 40 CFR	is referred to as Dry Gas lines in 40 CFR
																State of the state
					.	.				.				From the man operation of the second of the	170 1 C C O 7 WUSEN and Operation at 1 page	Sied I = I posed and operation in = I pose
														[% VOC by weight and operated at ≤ 1 psig	[% VOC by weight and operated at ≤ 1 psig	1% VUC by weight and operated at ≤ 1 psig
														[% VOC by weight and operated at ≤1 psig	[% VOC by weight and operated at ≤ 1 psig	[% VOC by weight and operated at ≤ 1 psig
														!% VOC by weight and operated at ≤ 1 psig	1% VOC by weight and operated at ≤ 1 psig	1% VOC by weight and operated at ≤ 1 psig
														[% VOC by weight and operated at ≤ 1 psig	1% VOC by weight and operated at ≤ 1 psignal.	1% VOC by weight and operated at ≤ 1 psig
														% VOC by weight and operated at ≤1 psig	!% VOC by weight and operated at ≤ 1 psig	$\%$ VOC by weight and operated at ≤ 1 psig
														1% VOC by weight and operated at ≤ 1 psig	1% VOC by weight and operated at ≤ 1 psig	$\%$ VOC by weight and operated at ≤ 1 psig
														1% VOC by weight and operated at ≤ 1 psig	(% VOC by weight and operated at ≤ 1 psig	[% VOC by weight and operated at ≤1 psig
														% VOC by weight and operated at ≤ 1 psig	(% VOC by weight and operated at ≤1 psig	1% VOC by weight and operated at ≤ 1 psig
														(% VOC by weight and operated at ≤ 1 psig	1% VOC by weight and operated at ≤ 1 psig	!% VOC by weight and operated at ≤ 1 psig
			 											1% VOC by weight and operated at ≤ 1 psig	!% VOC by weight and operated at ≤ 1 psig	% VOC by weight and operated at ≤ 1 psig
														!% VOC by weight and operated at ≤ 1 psig	1% VOC by weight and operated at ≤ 1 psig	1.0% VOC by weight and operated at ≤ 1 psig
														% VOC by weight and operated at ≤ 1 psig	(% VOC by weight and operated at ≤ 1 psig	1% VOC by weight and operated at ≤ 1 psig
														(% VOC by weight and operated at ≤ 1 psig	1% VOC by weight and operated at ≤ 1 psig	:% VOC by weight and operated at ≤ 1 psig
														ad	ad	ad
														ad	ac	ac
														ad	ad	ad
														ac	ad	ad
														Qd.	ad	ad
														ad	ad	ac
														ac	ac	ac
														ad	ad	ac
														ac	Qd a	ad
														ac	ac	Qd.
 			 											ad	ad	ad
					 	 				 				ad ad	ad ba	Qd ad
														ad	ad	ad ad
														ad	ad	ad ad
														ad	ad	ad ad
 														0.0	0.0	ad
														ad	ad	ac
														ac	ac	ad
														ac	90	ac
														ad	ad	ac
														ac	ad	ad
														ac	50	ad
														ad	ac	50
														ad	ad	50
														ac	ad	ac
														ac	ac	ad
														ac	ac	ad
														ac	ac	ad
														0.0	ac	ad
														0.0	ac	ad
			 	 			 						 	90	ac	ad
					 	 		 	 	 	 	 		90	ac	ad
					 	 		 	 	 	 	 		90	ac	ad
					 	 		 	 	 	 	 		90	ac	ad
					 	 		 	 	 	 	 		90	ac	ad
					 	 		 	 	 	 	 		90	ac	ad
					 	 		 	 	 	 	 		90	ac	ad
					 	 		 	 	 	 	 		90	ac	ad
														90	90	ac
														90	90	ac
														90	90	ac
														90	90	ac
														90	90	ac
														90	90	ac
														90	90	ac
														90	90	ac
														90	90	ac

Table 9 Fugitive Component LDAR BACT Table (continued)

FUGITIVE COMPONENT LEAK DETECTION AND REPAIR (LDAR) BEST AVAILABLE CONTROL TECHNOLOGY REQUIREMENTS TABLE	OLOGY REQUIREMENTS TABLE
Requirements	Additional Details
Construction of new and reworked piping, valves, pump systems, and compressor systems shall conform to applicable American National Standards Institute (ANSI), American Petroleum Institute (API), American Society of Mechanical Engineers (ASME), or equivalent codes.	To the extent that good engineering practice will permit, new and reworked valves and piping connections shall be so located to be reasonably accessible for leak-checking during plant operation.
New and reworked underground process pipelines shall contain no buried valves such that fugitive emission monitoring is rendered impractical. New and reworked piping connections shall be welded or flanged. Screwed connections are permissible only on piping smaller than two-inch diameter. Gas or hydraulic testing of the new and reworked piping connections at no less than operating pressure shall be performed prior to returning the components to service or they shall be monitored for leaks using an approved gas analyzer within 15 days of the components being returned to service. Where technically feasible new and reworked components may be screened for leaks with a soap bubble test within 8 hours of being returned to service in lieu of instrument testing. Adjustments shall be made as necessary to obtain leak-free performance.	
Each open-ended valve or line shall be equipped with an appropriately sized cap, blind flange, plug, or a second valve to seal the line so that no leakage occurs. Except during sampling, both valves shall be closed.	If the removal of a component for repair or replacement results in an open ended line or valve, it is exempt from the requirement to install a cap, blind flange, plug, or second valve for 72 hours. If the repair or replacement is not completed within 72 hours, the permit holder must complete either of the following actions within that time period: the line or valve must have a cap, blind flange, plug, or second valve installed, or the open-ended valve or line shall be monitored once for leaks above background for a plant or unit turnaround lasting up to 45 days with an approved gas analyzer and the results recorded. For all other situations, the open-ended valve or line shall be monitored once at the end of the 72 hour period following the creation of the open ended line and monthly thereafter with an approved gas analyzer and the results recorded. For turnarounds and all other situations, leaks are indicated by readings 20 ppmv above background and must be repaired within 24 hours or a cap, blind flange, plug, or second valve must be installed on the line or valve.
Components shall be inspected by visual, audible, and/or olfactory means at least weekly by operating personnel walk-through.	
Accessible valves shall be monitored by leak-checking for fugitive emissions quarterly using an approved gas analyzer. Sealless/leakless valves (including, but not limited to, welded bonnet bellows and diaphragm valves) and relief valves equipped with a rupture disc upstream or venting to a control device are not required to be monitored. If an unsafe-to-monitor valve is not considered safe to monitor within a calendar year, then it shall be monitored as soon as possible during safe-to-monitor times. A difficult-to-monitor component for which quarterly monitoring is specified may instead be monitored amnually.	Scalless/leakless valves and relief valves equipped with rupture disc or venting to a control device and exempted from instrument monitoring are not counted in the fugitive emissions estimates. See Table 7 Sampling and Demonstrations of Compliance for Fugitive and LDAR Analyzer requirements. See Table 8, Monitoring and Records Demonstrations to identify Difficult-to-monitor and unsafe-to-monitor valves.
For valves equipped with rupture discs, a pressure-sensing device shall be installed between the relief valve and rupture disc to monitor disc integrity.	All leaking discs shall be replaced at the earliest opportunity but no later than the next process shutdown.

Table 9 Fugitive Component LDAR BACT Table (continued)

	FUGITIVE COMPONENT LEAK DETECTION AND REPAIR (LDAR) BEST AVAILABLE CONTROL TECHNOLOGY REQUIREMENTS TABLE	DLOGY REQUIREMENTS TABLE
لگ	Requirements	Additional Details
1000 1101	All pump, compressor and agitator seals shall be monitored quarterly with an approved gas analyzer or be equipped with a shaft sealing system that prevents or detects emissions of VOC from the seal. Seal systems designed and operated to prevent emissions or seals equipped with an automatic seal failure detection and alarm system need not be instrument monitored. Seal systems that prevent emissions may include (but are not limited to) dual pump seals with barrier fluid at higher pressure than process pressure or seals degassing to vent control systems kept in good working order. Submerged pumps or sealless pumps (including, but not limited to, diaphragm, canned, or magnetic-driven pumps) may be used to satisfy the requirements of this condition and need not be monitored.	Pumps compressor and agitator seals that prevent leaks or direct emissions from the seals to control and are exempt from instrument moniforing are not counted in the fugitive emissions estimates. Equipment equipped with alarms would still be counted. See Table 7 Sampling and Demonstrations of Compliance for Fugitive and LDAR Analyzer requirements.
	For a site where the total uncontrolled potential to emit from all components is < 25 tpy; Components found to be emitting. VOC in excess of 10,000 parts per million by volume (ppmv) using EPA Method 21, found by visual inspection to be leaking (e.g. whistling, dripping or blowing process fluids or emitting hydrocarbon or H ₂ S odors) or found leaking using the Alternative Work Practice in 40 CFR §60.18(g) - (i) shall be considered to be leaking and shall be repaired, or tagged as specified. A first attempt to repair the leak must be made within 5 days. A leaking component shall be repaired as soon as practicable, but no later than 15 days after the leak is found. If the repair of a component would require a unit shutdown, the repair may be delayed until the next scheduled shutdown. All leaking components which cannot be repaired until a scheduled shutdown shall be identified for such repair by tagging.	Components subject to routine instrument monitoring with an approved gas analyzer under this leak definition my claim a 75% emission reduction credit when evaluating controlled fugitive emission estimates. This reduction credit does not apply when evaluating uncontrolled emission or to any component not measured with an instrument quarterly, but is allowed for all components monitored by the Alternative Work Practice. See Table 7 Sampling and Demonstrations of Compliance for Fugitive and LDAR Analyzer requirements
-48	Components not subject to a instrument monitoring program but found to be emitting VOC in excess of 10,000 ppmv using EPA Method 21, found by audio, visual or olfactory inspection to be leaking (e.g. whistling, dripping or blowing process fluids or emitting hydrocarbon or H ₂ S odors) shall be considered to be leaking and shall be repaired, replaced, or tagged as specified. All components are subject to monitoring when using the Alternative Work Practice in 40 CFR §60.18(g) - (i).	At the discretion of the TCEQ Executive Director or designated representative, early unit shutdown or other appropriate action may be required based on the number and severity of tagged leaks awaiting shutdown.
	Minimum Design, Monitoring, Technique or Control for all fugitive components with uncontrolled potential to emit of ≥ 25 tpy or ≥ 5 tpy H2S	ith uncontrolled potential to emit of ≥ 25 tpy or ≥ 5 tpy H2S
	For a site where the total uncontrolled potential to emit from all components is \geq 25 tpy; All the requirements for < 25tpy VOC above apply, except valves found to be emitting VOC in excess of 500 ppmv using EPA Method 21, found by audio, visual or olfactory inspection to be leaking (e.g. whistling, dripping or blowing process fluids or emitting hydrocarbon or H ₂ S odors) or found leaking using the Alternative Work Practice in 40 CFR §60.18(g) - (i) shall be considered to be leaking and shall be repaired, replaced, or tagged as specified and Pump, compressor, and agitator seals found to be emitting VOC in excess of 2,000 ppmv using EPA Method 21, found by audio, visual or olfactory inspection to be leaking (e.g. whistling, dripping or blowing process fluids or emitting hydrocarbon or H ₂ S odors) or found leaking using the Alternative Work Practice in 40 CFR §60.18(g) - (i) shall be considered to be leaking and shall be repaired, replaced, or tagged as specified.	Components subject to routine instrument monitoring under this leak definition my claim a 97% emission reduction credit for valves and an 85% emission reduction credit for pump, compressor and agitator seals when evaluating controlled fugitive emission estimates. This reduction credit does not apply when evaluating uncontrolled emission or to any component not measured with an instrument quarterly. See Table 7 Sampling and Demonstrations of Compliance for Fugitive and LDAR Analyzer requirements.

Table 9 Fugitive Component LDAR BACT Table (continued)

		FUGITIVE COMPONENT LEAK DETECTION AND REPAIR (LDAR) BEST AVAILABLE CONTROL TECHNOLOGY REQUIREMENTS TABLE	LOGY REQUIREMENTS TABLE
LDAR Monitoring Options Any site may reduce the controlled fugitive emission estimates by including components not required to be monitored in the quarterly instrument monitoring program or applying the lower leak definition of the more stringent program as appropriate. After completion of the required quarterly inspections for a period of at least two years, the operator of the OGS facility may change the monitoring schoule as follows: (i) After two conscentive quarterly leak detection periods with the percent of valves leaking equal to or less than 2.0%, an owner or operator may begin to skip one of the quarterly leak detection periods for the valves in gas/vapor and light liquid service. If the owner or operator is using the Alternative Work Practice in 40 CFR §60.18(g) - (i), the alternative frequencies specified in this standard permit are not allowed. Shutdown prior to Maintenance of Fugitive Components All components shall be kept in good repair. During repair or replacement, emission releases from the emptying of associated piping, equipment, and vessels must meet the emission limits and control requirements listed under pipeline or compressor blowdowns.			dditional Details
		LDAR Monitoring Options	
After completion of the required quarterly inspections for a period of at least two years, the operator of the OGS facility may change the monitoring schedule as follows:(i). After two consecutive quarterly leak detection periods with the percent of valves leaking equal to or less than 2.0%, an owner or operator may begin to skip one of the quarterly leak detection periods for the valves in gas/vapor and light liquid service. (ii). After five consecutive quarterly leak detection periods with the percent of valves leaking equal to or less than 2.0%, an owner or operator may begin to skip three of the quarterly leak detection periods for the valves in gas/vapor and light liquid service. If the owner or operator is using the Alternative Work Practice in 40 CFR §60.18(g) - (i), the alternative frequencies specified in this standard permit are not allowed. Shutdown prior to Maintenance of Fugitive Components All components shall be kept in good repair. During repair or replacement, emission releases from the emptying of associated piping, equipment, and vessels must meet the emission limits and control requirements listed under pipeline or compressor blowdowns.		Any site may reduce the controlled fugitive emission estimates by including components not required to be monitored in the quarterly instrument monitoring program or applying the lower leak definition of the more stringent program as appropriate.	uarterly monitoring at a leak definition of 10,000 ppmv would equate to a 75% emission reduction edit when evaluating controlled fugitive emission estimates for the component. Quarterly monitoring a leak definition of 500 ppmv would equate to a 97% emission reduction credit for valves, flanges and connectors, a 93% emission reduction eredit for pumps, and a 95% emission reduction credit for ompressor, agitator seals and other component groups when evaluating controlled fugitive emission trimates. This reduction credit does not apply when evaluating uncontrolled emission or to any emponent not measured with an instrument quarterly. See Table 7 Sampling and Demonstrations of ompliance for Fugitive and LDAR. Analyzer requirements.
	6-49	After completion of the required quarterly inspections for a period of at least two years, the operator of the OGS facility may change the monitoring schedule as follows:(i). After two consecutive quarterly leak detection periods with the percent of valves leaking equal to or less than 2.0%, an owner or operator may begin to skip one of the quarterly leak detection periods for the valves in gas/vapor and light liquid service. (ii). After five consecutive quarterly leak detection periods with the percent of valves leaking equal to or less than 2.0%, an owner or operator may begin to skip three of the quarterly leak detection periods for the valves in gas/vapor and light liquid service. If the owner or operator is using the Alternative Work Practice in 40 CFR §60.18(g) - (i), the alternative frequencies specified in this standard permit are not allowed.	
			art-up after Maintenance of components
			Then returning associated equipment and piping to service after repair or replacement of fugitive or imponents, appropriate leak detection shall occur and correction, maintenance or repair shall be neediately performed if fugitive components are not in good working order.

Table 10 Best Available Control Technology Requirements

Source or Facility	Air Contaminant	Minimum Acceptable Design, Control or Technique, Control Efficiencies, and Other Details during Production Operations
Combined Control Requirements	< 25 lpy VOC	No add on control is required if the continuous and periodic vents from all units, vessels and equipment (including normal operation process blow downs) is less than 25 tons of VOC per year.
	≥25 py VOC	All continuous and periodic vents on process vessels and equipment with potential emissions containing > 1% VOC at any time must be captured and directed to a control device listed in the Control Device BACT Table with a minimum design control efficiency of at least 95%, if the sum of the uncontrolled PTE of the vents at the site will equal or exceed 25 tons of VOC per year. A site total potential to emit of 1 tpy of VOC from vent gas streams may be exempted from this control requirement.
Glycol Dehydration Unit	Uncontrolled PTE < 10 tpy VOC VOC, BTEX, H ₂ S	No control is required. Condensers included in the equipment constructed must be maintained and operated as specified by the manufacturer or design engineering.
	Uncontrolled PTE≥10 tpy and < 50 tpy VOC. VOC, BTEX, H ₂ S	All non-combustion VOC emissions shall be routed to a vapor recovery unit (VRU), the unit rehoiler, or to an appropriate control device listed in the Control Device BACT Table. This includes the emissions from the condenser vent. Liquid waste or product material captured by a condenser must be enclosed and transferred to a unit compliant with the requirements of this table and the condenser must meet the requirements listed in the Control Device BACT Table with a minimum design control efficiency of 80%. For condensers, greater efficiencies may be claimed where enhanced monitoring and testing are applied following Table 7. If the unit reboiler is used to control the VOC emissions from the dehydrator (e.g. to control the condenser vent and the flash tank if one is present) the unit must be designed to efficiently combust those vented VOCs at least 50% of the time the unit is operated.
	Uncontrolled PTE≥50 tpy VOC VOC, BTEX, H ₂ S	All non-combustion VOC emissions shall be captured and directed to an appropriate control device listed in the Control Device BACT Table with a minimum design control efficiency of at least 95%.
Atmospheric Oil/Water separators	VOC with partial pressure < 0.5 psia at maximum liquid temperature or 95 F whichever is greater. VOC, BTEX, H ₂ S	May vent to atmosphere through vent no larger than 3 inch diameter. If H ₃ S can exceed 24 ppmv in the vapor space the separator vent shall be captured and directed to a control device listed in the Control Device BACT Table with a minimum design control efficiency of at least 95%.
	VOC with partial pressure ≥ 0.5 psia at maximum liquid	The oil layer must have a floating cover over the entire liquid surface with a conservation vent to atmosphere or the vents must be captured and directed to a control device listed in the Control Device BACT Table with a minimum design control efficiency of at least 95%.
	surface temperature or 95 F whichever is greater, VOC, BTEX, H ₂ S	If H ₂ S can exceed 24 ppmv in the vapor space the separator vent shall be captured and directed to a control device listed in the Control Device BACT Table with a minimum design control efficiency of at least 95%.
		If the separator operates with more than 25,000 gallons (595 barrels) of liquid contained or is used as an oil storage tank, it shall be treated as a storage tank and meet those requirements.
	Oil water separators where the material entering the separator may flash. VOC, BTEX, H ₂ S	These separators must be treated as process separators with a gas stream and follow those requirements.
Fuel Combustion Units including auxiliary fuel for combustion control devices	$_{\rm s}$ S	Fuel for all combustion units at the site shall be sweet natural gas or liquid petroleum gas, fuel gas containing no more than ten grains of total sulfur per 100 dry standard cubic feet (dscf), or field gas.

Table 10 Best Available Control Technology Requirements (continued)

Source or Facility	Air Contaminant	Minimum Acceptable Design, Control or Technique, Control Efficiencies, and Other Details during Production Operations
Boilers, Reboilers, Heater-Treaters, and Process Heaters	NOx, CO, PM ₁₀₂₅ , VOC, HCHO, SO ₂	If any unit has a designed maximum firing rate of < 40 MMBTU/hr and greater than 10 MMBtu/hr, it must be designed and operated for good combustion and meet 0.10 lb/MMBtu for NO _x . For boilers and reboilers greater than or equal to 40 MMBtu/hr, emission shall not exceed 0.036 lb/MMBtu for NO _x . For heaters and heater treaters greater than or equal to 40 MMBtu/hr but less than 100 MBtu/hr, emissions shall not exceed 0.06 lb/MMBtu for NO _x . Heaters and heater treaters greater than or equal to 100 MMBtu/hr shall not exceed 0.036 lb/MMBtu for NO _x .
		For boilers, reboilers, process heaters, and heater treaters with heat inputs equal to or greater than 10 MMBtu/hr, the emission limit for CO is 0.074 lb CO/MMBtu
GasFired Turbines	NOX, CO, PM _{102.5} , VOC, HCHO, SO ₂	Units shall be designed and operate with low NOx combustors and meet 25 ppmvd @ 15% O ₂ for NO _x and 50 ppmvd @ 15% O ₂ for CO.
All Tanks	Uncontrolled PTE of < 1.0 tpy VOC or < 0.1 tpy H2S	Open-topped tanks or ponds containing VOCs or H ₂ S are allowed
All Tanks	Uncontrolled PTE of ≥ 1.0 tpy VOC or ≥ 0.1 tpy H2S	Open-topped tanks or ponds containing VOCs or H ₂ S are not allowed. Tank hatches and valves, which emit to the atmosphere, shall remain closed except for sampling or planned maintenance activities. All pressure relief devices (PRD) shall be designed and operated to ensure that proper pressure in the vessel is maintained and shall stay closed except in upset or malfunction conditions. If the PRD does not automatically reset, it must be reset within 24 hours at a manned site and within one week if located at an unmanned site.
Process Separators, Crude oil, Condensate, Treatment chemicals, Produced water, Fuel, Slop/Sump Oil and any other storage tanks or vessels that contain a VOC or a film of VOC on the surface of water.	VOC with partial pressure < 0.5 psia at maximum liquid surface temperature or 95 F whichever is greater, or with uncontrolled PTE of < 5 tpy VOC from working and breathing losses, including flash emissions VOC, BTEX, H ₂ S	All storage tanks with a storage capacity greater than 500 gallons must be submerged fill. Existing tanks and vessels (including temporary liquid storage tanks) which are not increasing emissions at an OGS shall also meet this requirement no later than 180 days after a registration renewal as of January 1, 2016
	VOC with partial pressure \geq 0.5 paia at maximum liquid surface temperature or 9.5 F (whichever is greater), and with uncontrolled PTE of $<$ 5 tpy from working and breathing losses, including flash emissions	All storage tanks with a storage capacity greater than 500 gallons must be submerged fill. Un-insulated tank exterior surfaces exposed to the sun shall be of a color that minimizes the effects of solar heating (including, but not limited to, white or aluminum). To meet this requirement the solar absorptance should be 0.43 or less, as referenced in Table 7.1-6 in AP-42. Paint shall be maintained in good condition. If a new or modified tank cannot be painted white or other reflective color, then another control device may be used to control emissions. Exceptions to the color requirement include the following: (B) Up to 10% of the external surface area of the roof or walls of the tank or vessel may be painted with other colors to allow for identifying information or aesthetic purposes; and (B) If a local, state or federal law or ordinance or private contract which predates this standard permit's effective date establishes in writing tank and vessel colors other than white. If applicable, a copy of this documentation must be provided to the commission upon registration. (C) Tanks and vessels purposefully darkened to create the process reaction and help condense liquids from being entrained in the vapor. Existing tanks and vessels (including temporary liquid storage tanks) which are not increasing emissions at an OGS using shall also meet this requirement no later than 180 days after a registration renewal as of January 1, 2016.

Table 10 Best Available Control Technology Requirements (continued)

Source or Facility	Air Contaminant	Minimum Acceptable Design, Control or Technique, Control Efficiencies, and Other Details during Production Operations
Process Separators, Crude oil, Condensate, Treatment chemicals, Produced water, Fuel, Slop/Sump Oil and any other storage tanks or vessels that contain a VOC or a film of VOC on the surface of water.	VOC with uncontrolled PTE of≥ 5 tpy	Vents shall be captured and directed to an appropriate control device as listed in standard permit (e) BMP and BACT. Un-insulated tank exterior surfaces exposed to the sun shall be of a color that minimizes the effects of solar heating (including, but not limited to, white or aluminum). To meet this requirement the solar absorptance should be 0.43 or less, as referenced in Table 7.1-6 in AP-42. Paint shall be maintained in good condition. Exceptions to the color requirement include the following: (A) Up to 10% of the external surface area of the roof or walls of the tank or vessel may be painted with other colors to allow for identifying information or aesthetic purposes; and (B) If a local, state or federal law or ordinance or private contract which predates this standard permit's effective date establishes in writing tank and vessel (orlor of the solar process reaction and help condense liquids from being entrained in the vapor. (C) Tanks and vessels (including temporary liquid storage tanks) which are not increasing emissions at an OGS using shall also meet this requirement no later than 180 days after a registration renewal as of January 1, 2016.
Truck Loading	VOC with partial pressure < 0.5 psia at maximum liquid surface temperature or 95 F whichever is greater, or with uncontrolled PTE of < 5 tpy VOC.	Loading is recommended to be performed with submerged filling, or vapor balancing back to the tank and any subsequent recovery or control device.
	VOC with partial pressure ≥ 0.5 psia at maximum liquid surface temperature or 95 F whichever is greater VOC, BTEX, H ₂ S	Splash loading and uncontrolled vacuum truck loading is not allowed. Loading shall be performed with a control effectiveness of at least 42% as compared to splash loading. Loading may occur by submerged filling or equivalent prevention or recovery technique as listed in Table 10.
	VOC with uncontrolled PTE of≥ 5 tpy VOC VOC, BTEX, H ₂ S	Loading vapors shall be captured and directed to an appropriate control device listed in the Control Device BACT Table with a minimum design control efficiency of at least 98%, routed to a vapor recovery unit (VRU) with a control effectiveness of at least 95%, or vapor balanced back to the delivering storage tank equipped with a VRU, or connected to a control device listed in the Control Device BACT Table with a minimum design control efficiency of at least 95%.
	Controlled Loading	Where loading control is required, the collection or capture system must be connected to the tank rruck so all displaced vapors are directed to the control device and the control device is operational before loading is commenced. When properly connected the capture efficiency will be assumed to be 70% efficient at capturing the displaced truck vapors. The capture efficiency may be assumed to be 98.7 percent efficient when the tanker truck has certification that the tank has passed vapor-tightness testing within the last 12 months using the methods described in 40 CFR 60, Subpart XX. The capture efficiency may be assumed to be 99.2 percent efficient when the tanker truck has certification that the tank has passed vapor-tightness testing within the last 12 months using the methods described in 40 CFR 63, Subpart R. Loading shall be discontinued when liquid or gas leaks from the loading or collection system are observed.

Table 10 Best Available Control Technology Requirements (continued)

Source or Facility	Air Contaminant	Minimum Acceptable Design, Control or Technique, Control Efficiencies, and Other Details during Production Operations
Cooling Tower Heat Exchange VOC, BTEX, PM _{107.5} System	VOC, BTEX, PM102.5	Heat exchange systems must be non-contact design (i.e. designed and operated to avoid direct contact with gaseous or liquid process streams containing VOC, H2S, halogens or halogen compounds, cyanide compounds, inorganic acids, or acid gases).
		Systems with heat exchangers that cool a fluid with VOC shall meet the following: The cooling water must be at a higher pressure than the process fluid in the heat exchangers or the cooling tower water must be monitored monthly for VOC emissions using TCEQ Sampling Procedures Manual, Appendix P dated January 2003 or a later edition. Equipment shall be maintained so as to minimize VOC emissions into the cooling water. Cooling water VOC concentrations greater than 0.08 ppmw indicate faulty equipment. If the repair of a heat exchanger would require a unit shutdown that would create more emissions than the repair would eliminate, the repair may be delayed until the next planned shutdown or 180 days if no shutdowns are scheduled. Cooling towers shall be designed and operated with properly functioning drift eliminators. New cooling towers shall be designed with drift eliminators designed to meet ≤ 0.001% drift.

List of Acronyms

°C Degrees Celsius
°F Degrees Fahrenheit

μg/m³ Micrograms per cubic meter acfm Actual cubic feet per minute ADMT Air Dispersion Modeling Team

AMINECale Amine Unit Air Emissions Model Ver 1.0 AP-42 Air Pollutant Emission Factors, 5th ed

APD Air Permits Division

API American Petroleum Institute APWL Air Pollutant Watch List

AREACIRC Co-located circular area source from the EPA

AERMOD Modeling System

AWP Alternative Work Practices

BACT Best Available Control Technology

bbl Barrel

bbl/day Barrels per day

BMP Best Management Practices (includes equipment manufacturer's guidelines and specifications)

BTEX Benzene, Toluene, Ethylbenzene, Xylene Btu/sef British thermal units per standard cubic feet

CEMS Continuous Emissions Monitoring System

cf/day Cubic feet per day
cfm Cubic feet per minute
CFR Code of Federal Regulations

CO₂ Carbon dioxide COS Carbonyl sulfide

CPR Considerable personnel and resources

CS₂ Carbon disulfide CT Cooling towers

DEA Diethanolamine DGA Diglycolamine DIPA Di-isopropylamine

DOT Department of Transportation
DRE Destruction rate efficiency
dscf Dry standard cubic feet
DV Designated value

E Maximum acceptable emission rate (lb/hr)

EF Emission factor

EFR External floating roof tank

E_{max} Maximum acceptable emission rate (lb/hr) EPA Environmental Protection Agency

EPN Emission point number ESL Effects screening level

FR Federal Register

ft Feet

ft/sec Feet per second

gal/wk Gallons per week gal/yr Gallons per year

GLC_{max} Max predicted ground-level concentration

GOP General Operating Permit

List of Acronyms (continued)

H₂S Hydrogen sulfide HAP Hazardous air pollutant

HB House Bill
HCl Hydrogen chloride
hp Horsepower
hr Hour

HRVOC Highly reactive volatile organic compounds
HYSIM® Hydrologic Simulation Model computer program

HYSIS® Process simulator computer program

ICE Internal combustion engine IFR Internal floating roof tank

IR Infrared

ISCST3 Industrial Source Complex Short-term Model V02035

LACT Lease automatic custody transfer unit

lb Pound lb/hr Pounds per hour

lb/MMBtu Pounds per million British thermal units

lbs/day Pounds per day

LDAR Leak detection and repair

 $\begin{array}{ll} L_L & Loading\ losses \\ LPG & Liquid\ petroleum\ gas \\ LT/D & Long\ ton\ per\ day \end{array}$

m/sec Meters per second

MACT Maximum Available Control Technology

MDEA Methyl-diethanolamine MEA Monoethanol amine

MERA Modeling and Effects Review Applicability

MMBtu Million British thermal units

MMBtu/hr Million British thermal units per hour

MMCFD Million cubic feet per day

MSS Maintenance, start-up, and shutdown

NAAQS National Ambient Air Quality Standards
NESHAP National Emission Standards for Hazardous Air

Pollutants

NGL Natural gas liquids

NNSR Nonattainment New Source Review

NO₂ Nitrogen dioxide NO_x Oxides of nitrogen

NSPS New Source Performance Standards

NSR New Source Review

O₂ Oxygen (molecular form)

OGS Oil and gas site

PBR Permit by Rule

PM₁₀ Particulate matter less than or equal to 10 microns

POC Products of combustion ppm Parts per million

Ppmvd Parts per million by volume, dry

PROSIM® DOS based process simulator computer program

List of Acronyms (continued)

PSD Prevention of Significant Deterioration

psi Pounds per square inch

psia Pounds per square inch, absolute psig Pounds per square inch, gage

RICE Reciprocating internal combustion engine

RVP Reid vapor pressure

scfh Standard cubic feet per hour scfm Standard cubic feet per minute scmd Standard cubic feet per day

SCREEN3 Air dispersion modeling computer program for

windows, Version 5.0. BEE-line Software c1998-2002

SE Standard Exemption

SIC Standard Industrial Classification System

SO₂ Sulfur dioxide

SOP Site Operating Permit Standard permit Standard Permit SRU Sulfur recovery unit

T&S Transfer and storage
TAC Texas Administrative Code
TCAA Texas Clean Air Act

TCEQ Texas Commission on Environmental Quality

TEA Triethanolamine

THSC Texas Health and Safety Code

tpy Tons per year

V-B Vasquez-Beggs correlation equation VOC Volatile organic compounds VRU Vapor recovery unit or system

WINSIM® Windows process simulator computer program

Page 5

standard permit in accordance with the requirements of §116.611 of this title (relating to Registration to Use a Standard Permit).

- (f) If the commission revokes a standard permit, it will provide written notice to affected registrants prior to the revocation of the standard permit. The notice will advise registrants that they must apply for a permit under this chapter or qualify for an authorization under Chapter 106 of this title (relating to Exemptions from Permitting).
- (g) The issuance, amendment, or revocation of a standard permit or the issuance, renewal, or revocation of a registration to use a standard permit is not subject to Texas Government Code, Chapter 2001.

Adopted December 16, 1999

Effective January 11, 2000

§116.606. Delegation

The commission may delegate to the executive director any authority in this subchapter.

Adopted December 16, 1999

Effective January 11, 2000

§116.610. Applicability.

- (a) Under the Texas Clean Air Act, §382.051, a project that meets the requirements for a standard permit listed in this subchapter or issued by the commission is hereby entitled to the standard permit, provided the following conditions listed in this section are met. For the purposes of this subchapter, project means the construction or modification of a facility or a group of facilities submitted under the same registration.
- (1) Any project that results in a net increase in emissions of air contaminants from the project other than carbon dioxide, water, nitrogen, methane, ethane, hydrogen, oxygen, or those for which a national ambient air quality standard has been established must meet the emission limitations of \$106.261 of this title (relating to Facilities (Emission Limitations), unless otherwise specified by a particular standard permit.
- (2) Construction or operation of the project must be commenced prior to the effective date of a revision to this subchapter under which the project would no longer meet the requirements for a standard permit.
- (3) The proposed project must comply with the applicable provisions of the Federal Clean Air Act (FCAA), §111 (concerning New Source Performance Standards) as listed under 40 Code of Federal Regulations (CFR) Part 60, promulgated by the United States Environmental Protection Agency (EPA).
- (4) The proposed project must comply with the applicable provisions of FCAA, §112 (concerning Hazardous Air Pollutants) as listed under 40 CFR Part 61, promulgated by the EPA.

- (5) The proposed project must comply with the applicable maximum achievable control technology standards as listed under 40 CFR Part 63, promulgated by the EPA under FCAA, §112 or as listed under Chapter 113, Subchapter C of this title (relating to National Emissions Standards for Hazardous Air Pollutants for Source Categories (FCAA, §112, 40 CFR Part 63)).
- (6) If subject to Chapter 101, Subchapter H, Division 3 of this title (relating to Mass Emissions Cap and Trade Program) the proposed facility, group of facilities, or account must obtain allocations to operate.
- (b) Any project that constitutes a new major stationary source or major modification as defined in §116.12 of this title (relating to Nonattainment and Prevention of Significant Deterioration Review Definitions) is subject to the requirements of §116.110 of this title (relating to Applicability) rather than this subchapter.
 - (c) Persons may not circumvent by artificial limitations the requirements of §116.110 of this title.
- (d) Any project involving a proposed affected source (as defined in §116.15(1) of this title (relating to Section 112(g) Definitions)) shall comply with all applicable requirements under Subchapter E of this chapter (relating to Hazardous Air Pollutants: Regulations Governing Constructed or Reconstructed Major Sources (FCAA, §112(g), 40 CFR Part 63)). Affected sources subject to Subchapter E of this chapter may use a standard permit under this subchapter only if the terms and conditions of the specific standard permit meet the requirements of Subchapter E of this chapter.

Adopted January 11, 2006

Effective February 1, 2006

§116.611. Registration to Use a Standard Permit.

- (a) If required, registration to use a standard permit shall be sent by certified mail, return receipt requested, or hand delivered to the executive director, the appropriate commission regional office, and any local air pollution program with jurisdiction, before a standard permit can be used. The registration must be submitted on the required form and must document compliance with the requirements of this section, including, but not limited to:
 - (1) the basis of emission estimates;
- (2) quantification of all emission increases and decreases associated with the project being registered;
- (3) sufficient information as may be necessary to demonstrate that the project will comply with §116.610(b) of this title (relating to Applicability);
- (4) information that describes efforts to be taken to minimize any collateral emissions increases that will result from the project;

- (5) a description of the project and related process; and
- (6) a description of any equipment being installed.
- (b) Construction may begin any time after receipt of written notification from the executive director that there are no objections or 45 days after receipt by the executive director of the registration, whichever occurs first, except where a different time period is specified for a particular standard permit.
- (c) In order to avoid applicability of Chapter 122 of this title (relating to Federal Operating Permits), a certified registration shall be submitted. The certified registration must state the maximum allowable emission rates and must include documentation of the basis of emission estimates and a written statement by the registrant certifying that the maximum emission rates listed on the registration reflect the reasonably anticipated maximums for operation of the facility. The certified registration shall be amended if the basis of the emission estimates changes or the maximum emission rates listed on the registration no longer reflect the reasonably anticipated maximums for operation of the facility. The certified registration shall be submitted to the executive director; to the appropriate commission regional office; and to all local air pollution control agencies having jurisdiction over the site. Certified registrations must also be maintained in accordance with the requirements of §116.115 of this title (relating to General and Special Conditions).
- (1) Certified registrations established prior to the effective date of this rule shall be submitted on or before February 3, 2003.
- (2) Certified registrations established on or after the effective date of this rule shall be submitted no later than the date of operation.

Adopted November 20, 2002

Effective December 11, 2002

§116.614. Standard Permit Fees.

Any person who registers to use a standard permit or an amended standard permit, or to renew a registration to use a standard permit shall remit, at the time of registration, a flat fee of \$900 for each standard permit being registered, unless otherwise specified in a particular standard permit. No fee is required if a registration is automatically renewed by the commission. All standard permit fees will be remitted in the form of a check, certified check, electronic funds transfer, or money order made payable to the Texas Commission on Environmental Quality (TCEQ) and delivered with the permit registration to the TCEQ, P.O. Box 13088, MC 214, Austin, Texas 78711-3087. No fees will be refunded.

Adopted September 25, 2002

Effective October 20, 2002

§116.615. General Conditions.

The following general conditions are applicable to holders of standard permits, but will not necessarily be specifically stated within the standard permit document.

- (1) Protection of public health and welfare. The emissions from the facility, including dockside vessel emissions, must comply with all applicable rules and regulations of the commission adopted under Texas Health and Safety Code, Chapter 382, and with the intent of the Texas Clean Air Act (TCAA), including protection of health and property of the public.
- (2) Standard permit representations. All representations with regard to construction plans, operating procedures, and maximum emission rates in any registration for a standard permit become conditions upon which the facility or changes thereto, must be constructed and operated. It is unlawful for any person to vary from such representations if the change will affect that person's right to claim a standard permit under this section. Any change in condition such that a person is no longer eligible to claim a standard permit under this section requires proper authorization under §116.110 of this title (relating to Applicability). If the facility remains eligible for a standard permit, the owner or operator of the facility shall notify the executive director of any change in conditions which will result in a change in the method of control of emissions, a change in the character of the emissions, or an increase in the discharge of the various emissions as compared to the representations in the original registration or any previous notification of a change in representations. Notice of changes in representations must be received by the executive director no later than 30 days after the change.
- (3) Standard permit in lieu of permit amendment. All changes authorized by standard permit to a facility previously permitted under §116.110 of this title shall be administratively incorporated into that facility's permit at such time as the permit is amended or renewed.
- (4) Construction progress. Start of construction, construction interruptions exceeding 45 days, and completion of construction shall be reported to the appropriate regional office not later than 15 working days after occurrence of the event, except where a different time period is specified for a particular standard permit.
 - (5) Start-up notification.

- (B) For phased construction, which may involve a series of units commencing operations at different times, the owner or operator of the facility shall provide separate notification for the commencement of operations for each unit.
- (C) Prior to beginning operations of the facilities authorized by the permit, the permit holder shall identify to the Office of Permitting, Remediation, and Registration, the source or sources of allowances to be utilized for compliance with Chapter 101, Subchapter H, Division 3 of this title (relating to Mass Emissions Cap and Trade Program).
 - (D) A particular standard permit may modify start-up notification requirements.
- (6) Sampling requirements. If sampling of stacks or process vents is required, the standard permit holder shall contact the commission's appropriate regional office and any other air pollution control agency having jurisdiction prior to sampling to obtain the proper data forms and procedures. All sampling and testing procedures must be approved by the executive director and coordinated with the regional representatives of the commission. The standard permit holder is also responsible for providing sampling facilities and conducting the sampling operations or contracting with an independent sampling consultant.
- (7) Equivalency of methods. The standard permit holder shall demonstrate or otherwise justify the equivalency of emission control methods, sampling or other emission testing methods, and monitoring methods proposed as alternatives to methods indicated in the conditions of the standard permit. Alternative methods must be applied for in writing and must be reviewed and approved by the executive director prior to their use in fulfilling any requirements of the standard permit.
- (8) Recordkeeping. A copy of the standard permit along with information and data sufficient to demonstrate applicability of and compliance with the standard permit shall be maintained in a file at the plant site and made available at the request of representatives of the executive director, the United States Environmental Protection Agency, or any air pollution control agency having jurisdiction. For facilities that normally operate unattended, this information shall be maintained at the nearest staffed location within Texas specified by the standard permit holder in the standard permit registration. This information must include, but is not limited to, production records and operating hours. Additional recordkeeping requirements may be specified in the conditions of the standard permit. Information and data sufficient to demonstrate applicability of and compliance with the standard permit must be retained for at least two years following the date that the information or data is obtained. The copy of the standard permit must be maintained as a permanent record.
- (9) Maintenance of emission control. The facilities covered by the standard permit may not be operated unless all air pollution emission capture and abatement equipment is maintained in good

working order and operating properly during normal facility operations. Notification for emissions events and scheduled maintenance shall be made in accordance with §101.201 and §101.211 of this title (relating to Emissions Event Reporting and Recordkeeping Requirements; and Scheduled Maintenance, Startup, and Shutdown Reporting and Recordkeeping Requirements).

- (10) Compliance with rules. Registration of a standard permit by a standard permit applicant constitutes an acknowledgment and agreement that the holder will comply with all rules, regulations, and orders of the commission issued in conformity with the TCAA and the conditions precedent to the claiming of the standard permit. If more than one state or federal rule or regulation or permit condition are applicable, the most stringent limit or condition shall govern. Acceptance includes consent to the entrance of commission employees and designated representatives of any air pollution control agency having jurisdiction into the permitted premises at reasonable times to investigate conditions relating to the emission or concentration of air contaminants, including compliance with the standard permit.
- (11) Distance limitations, setbacks, and buffer zones. Notwithstanding any requirement in any standard permit, if a standard permit for a facility requires a distance, setback, or buffer from other property or structures as a condition of the permit, the determination of whether the distance, setback, or buffer is satisfied shall be made on the basis of conditions existing at the earlier of:
 - (A) the date new construction, expansion, or modification of a facility begins; or
- (B) the date any application or notice of intent is first filed with the commission to obtain approval for the construction or operation of the facility.

Adopted February 21, 2007

Effective March 15, 2007

\$116.617. State Pollution Control Project Standard Permit.

- (a) Scope and applicability.
- (1) This standard permit applies to pollution control projects undertaken voluntarily or as required by any governmental standard, that reduce or maintain currently authorized emission rates for facilities authorized by a permit, standard permit, or permit by rule.
 - (2) The project may include:
 - (A) the installation or replacement of emissions control equipment;
 - (B) the implementation or change to control techniques; or
 - (C) the substitution of compounds used in manufacturing processes.
- (3) This standard permit must not be used to authorize the installation of emission control equipment or the implementation of a control technique that:

Facility/Compound Specific Fugitive Emission Factors

Fortiment/	Ffhylono	,		Petroleum	Oil and Ga	Oil and Gas Production Operations	Operation	ns 5	
Service	Oxide 1	Phosgene ²	Butadiene ³	Marketing Terminal	Gas	Heavy Oil <20° API	Light Oil	Water/Li ght Oil	Refinery °
Valves					0.00992	0.0000185	0.0055	0.000216	
Gas/Vapor	0.000444	0.00000216	0.001105	0.0000287					0.059
Light Liquid	0.00055	0.00000199	0.00314	0.0000948					0.024
Heavy Liquid				0.0000948					0.00051
Pumps	0.042651	0.0000201	0.05634		0.00529	0.00113^{10}	0.02866	0.0000052	
Light Liquid				0.00119					0.251
Heavy Liquid				0.00119					0.046
Flanges/Connectors	0.000555	0.00000011	0.000307		98000'0	9800000000	0.000243	90000000	0.00055
Gas/Vapor				0.000092604					
Light Liquid				0.00001762					
Heavy Liquid				0.0000176					
Compressors	0.000767		0.000004		0.0194	0.0000683	0.0165	0.0309	1.399
Relief Valve	0.000165	0.0000162	0.02996		0.0194	0.0000683	0.0165	0.0309	0.35
Open-ended Lines 7	0.001078	0.00000007	0.00012		0.00441	0.000309	0.00309	0.000055	0.0051
Sampling	0.000088		0.00012						0.033
Connectors					0.00044	0.0000165	0.000463	0.000243	
Other ⁹					0.0194	0.0000683	0.0165	0.0309	
Gas/Vapor				0.000265					
Light/Heavy Liquid				0.000287					
Process Drains					0.0194	0.0000683	0.0165	0.0309	0.07

Table Notes: All factors are in units of (lb/hr)/component.

- Monitoring must occur at a leak definition of 500 ppmv. No additional control credit can be applied to these factors. Emission factors are from EOIC Fugitive Emission Study, Summer 1988.
- 2. Monitoring must occur at a leak definition of 50 ppmv. No additional control credit can be applied to these factors. Emission factors are from Phosgene Panel Study, Summer 1988.
- 3. Monitoring must occur at a leak definition of 100 ppmv. No additional control credit can be applied to these factors. Emission factors are from Randall, J. L., et al., Radian Corporation. Fugitive Emissions from the 1,3-butadiene Production Industry: A Field Study. Final Report. Prepared for the 1,3-Butadiene Panel of the Chemical Manufacturers Association. April 1989.
- 4. Control credit is included in the factor; no additional control credit can be applied to these factors. Monthly AVO inspection required.
- 5. Factors give the total organic compound emission rate. Multiply by the weight percent of non-methane, non-ethane organics to get the VOC emission rate.
- 6. Factors are taken from EPA Document EPA-453/R-95-017, November 1995, Page 2-13.
- 7. The 28 Series quarterly LDAR programs require open-ended lines to equipped with a cap, blind flange, plug, or a second valve. If so equipped, open-ended lines may be given a 100% control credit.
- 8. Emission factor for Sampling Connections is in terms of pounds per hour per sample taken.

- For Petroleum Marketing Terminals" Other" includes any component excluding fittings, pumps, and valves. For Oil and Gas Production Operations, "Other" includes diaphragms, dump arms, hatches, instruments, meters, polished rods, and vents.
- 10. No Heavy Oil Pump factor was derived during the API study. The factor is the SOCMI without C₂ Heavy Liquid Pump factor with a 93% reduction credit for the physical inspection.

Tank Truck Loading of Crude Oil or Condensate

Scope: Tank Truck Loading activities at loading terminals

The transportation and marketing of petroleum liquids involve many distinct operations, each of which represents a potential source of evaporation loss. Crude oil or condensate is transported from oil and gas sites to a refinery or other refining operations by tankers, barges, rail tank cars, tank trucks, and pipelines.

Loading losses are the primary source of evaporative emissions from rail tank car, tank truck, and marine vessel operations (for marine loading please review Marine Loading of Crude Oil and Condensate Guidance Document). Loading losses occur as organic vapors in "empty" cargo tanks are displaced to the atmosphere by the liquid being loaded into the tanks. These vapors are a composite of (1) vapors formed in the empty tank by evaporation of residual product from previous loads, (2) vapors transferred to the tank in vapor balance systems as product is being unloaded, and (3) vapors generated in the tank as the new product is being loaded. The quantity of evaporative losses from loading operations is, therefore, a function of the following parameters:

- Physical and chemical characteristics of the previous cargo;
- Method of unloading the previous cargo;
- Operations to transport the empty carrier to a loading terminal;
- Method of loading the new cargo; and
- Physical and chemical characteristics of the new cargo.

Tank truck loading operations can be divided into three general categories: A) atmospheric trucks, B) pressure trucks used in atmospheric service, and C) pressure trucks. The type of connection that is used in the loading procedure will be considered to determine the collection efficiency. "Quick connects" are clamp type connections that are not bolted or flanged. "Quick connects" can be used with atmospheric trucks. Hard-piped connections are bolted or flanged to the receiving vessel. Hard-piped connections should be used with pressure trucks to achieve its maximum collection efficiency. Atmospheric trucks must be leak checked according to NSPS Subpart XX to achieve its maximum collection efficiency.

Tank Truck Loading Authorizations

All stationary facilities, or groups of facilities, at a site which handle gases and liquids associated with the production, conditioning, processing, and pipeline transfer of fluids or gases found in geologic formations on or beneath the earth's surface including, but not limited to, crude oil, natural gas, condensate, and produced water that satisfy the general conditions of Title 30, Texas Administrative Code (30 TAC), Section 106.4, and the specific conditions of 30 TAC Section 106.352 are permitted by rule. The commission also has available rule language in an easy-to-read format for the permit by rule.

For all new projects and dependent facilities not located in the Barnett Shale counties, the current 106.352 subsection (l) is applicable, which contains the previous requirements of 106.352.

This form is for use by facilities subject to air quality permit requirements and may be revised periodically. Tank Truck Loading of Crude Oil or Condensate (Revised 02/12)

Page 1 of 4

For projects located in one of the Barnett Shale counties which are constructed or modified on or after April 1, 2011 subsections (a)-(k) apply.

Other permit by rules which may be used for tank truck loading but are not commonly seen are 106.261, 106.262, 106.472, and 106.473.

If a site does not qualify for a PBR, it may be authorized by a standard permit. Sites constructed prior to April 1, 2011 may be authorized using the Oil and Gas Standard Permit (30 TAC 116.620, effective January 11, 2000). For sites in one of the Barnett Shale counties constructed or modified on or after April 1, 2011, the site is subject to the requirements of the Air Quality Standard Permit for Oil and Gas Handling and Production Facilities.

Emission Calculations

Loading calculations are listed in AP-42, Chapter 5, Section 5.2: Transportation and Marketing of Petroleum Liquids.

Submerged tank truck loading is the minimum level of control required. The two types of submerge loading are the submerged fill pipe method and the bottom loading method. In the submerged fill pipe method, the fill pipe extends almost to the bottom of the cargo tank. In the bottom loading method, a permanent fill pipe is attached to the cargo tank bottom. During most of submerged loading by both methods, the fill pipe opening is below the liquid surface level. Liquid turbulence is controlled significantly during submerged loading, resulting in much lower vapor generation than encountered during splash loading.

The saturation factor, S, represents the expelled vapor's fractional approach to saturation, and it accounts for the variations observed in emission rates from the different unloading and loading methods. The loading calculation requires the use of a Saturation Factor (S factor) listed in Table 5.2-1, Saturation (S) Factors for Calculating Petroleum Liquid Loading Losses.

Submerged loading: dedicated normal service, S factor = 0.6

The S factor of 0.6 should be used if the tank truck is in "dedicated normal service". Dedicated normal service means the tank truck is used to transport only one product or products with similar characteristics (petroleum products with similar API gravity, molecular weight, vapor pressure).

Submerged Loading: dedicated vapor balance, S factor = 1.0

The S factor of 1.0 should be used if the loading vapors are returned back to the tank truck when it is unloaded to a storage tank or other vessel.

Emissions from loading petroleum liquid can be estimated using the following expression:

Where:

$$L_L = 12.46 \frac{SPM}{T}$$

- LL= loading loss, pounds per 1000 gallons (lb/103 gal) of liquid loaded
- S = a saturation factor (see Table 5.2-1)

This form is for use by facilities subject to air quality permit requirements and may be revised periodically. Tank Truck Loading of Crude Oil or Condensate (Revised 02/12)

Page 2 of 4

- P = true vapor pressure of liquid loaded, pounds per square inch absolute (psia) (see Section 7.1, "Organic Liquid Storage Tanks")
- M = molecular weight of vapors, pounds per pound-mole (lb/lb-mole) (see Section 7.1, "Organic Liquid Storage Tanks")
- $T = \text{temperature of bulk liquid loaded, } ^{\circ}R (^{\circ}F + 460)$

Emissions are broken down into short-term emissions (lb/hr) and annual emissions (tons/year). Short-term emissions should be estimated by using the maximum expected vapor pressure and temperature of the compound being loaded and the maximum expected pumping rate being used to fill the container (loading tank truck). Annual emissions should be estimated by using the average annual temperature and corresponding vapor pressure of the compound and the expected annual throughput of the compound.

Capture/Collection techniques and efficiency

The overall reduction efficiency should account for the capture efficiency of the collection system as well as both the control efficiency and any downtime of the control device. Measures to reduce loading emissions include selection of alternate loading methods and application of vapor recovery equipment.

Please note, not all of the displaced vapors reach the control device, because of leakage from both the tank truck and collection system. The collection efficiency should be assumed to be 98.7 percent for tanker trucks passing an annual leak test per EPA standards. A collection efficiency of 70 percent should be assumed for trucks which are not leak tested.

- 70% capture/collection efficiency if not leak tested
- 98.7% capture/collection efficiency if leak tested based on EPA standards (NSPS Subpart XX)
- 100% capture/collection efficiency if a blower system is installed which will produce a vacuum in the tank truck during all loading operations. A pressure/vacuum gauge shall be installed on the suction side of the loading rack blower system adjacent to the truck being loaded to verify a vacuum in that vessel. Loading shall not occur unless there is a vacuum of at least 1.5 inch water column being maintained by the vacuum-assist vapor collection system when loading trucks. The vacuum shall be recorded every 15 minutes during loading.

Uncollected Loading Emissions

Uncollected loading emissions are referred to as loading fugitives and are listed as a separate emission point or source. Uncollected loading emissions (LLF) can be estimated using the following expression:

$$L_{LF} = (L_L) (1 - Collection Efficiency)$$
100

This form is for use by facilities subject to air quality permit requirements and may be revised periodically. Tank Truck Loading of Crude Oil or Condensate (Revised 02/12)

Control techniques and control efficiencies

Emissions from controlled loading operations can be calculated by multiplying the uncontrolled emission rate calculated in the loading loss equation (LL) by an overall reduction efficiency term:

Emissions =
$$(L_L)$$
 (Collection Efficiency) $(1 - Control Efficiency)$
100 100

- Flares Flares must meet 40 CFR 60.18 requirements of minimum heating value of waste gas and a maximum flare tip velocity. Flares can have a control efficiency of 98% or 99% for the following compounds: methanol, ethanol, propanol, ethylene oxide, and propylene oxide. The agency highly encourages the consideration of variable speed blowers when a control efficiency of > 98% is claimed for a steam assisted flare to reduce over steaming of the flare which could affect the control efficiency.
- Thermal oxidizers must be designed for the variability of the waste gas stream and basic monitoring which consists of thermocouple or infrared monitor that indicates the device is working. Control efficiencies range from 95% <99%.
- Carbon Systems Can claim up to a 98% control efficiency. The carbon system must have an alarm system that will prevent break through.
- Vapor Recovery Units (VRU) Can claim up to 100% control. Designed systems claiming 100% control must submit the requirements found in the Vapor Recovery Unit Capture/Control Guidance.

Note: Loading cannot occur while the control system is off-line.

Vapor balancing is NOT a form of control; it is only a capture technique.

Flare Emission Factors

The usual flare destruction efficiencies and emission factors are provided in Table 4. The high-Btu waste streams referred to in the table have a heating value greater than 1,000 Btu/scf.

Flare Destruction Efficiencies

Claims for destruction efficiencies greater than those listed in Table 4 will be considered on a case-by-case basis. The applicant may make one of the three following demonstrations to justify the higher destruction efficiency: (1) general method, (2) 99.5 percent justification, or (3) flare stack sampling.

Table 4. Flare Factors

Waste Stream	Destruction/Re	moval Efficien	cy (DRE)
VOC	contain no element following composition	ompounds conta ents other than c ounds; methanol	ining no more than 3 carbons that arbon and hydrogen in addition to the , ethanol, propanol, ethylene oxide and
	propylene oxide		
$\mathrm{H_2S}$	98 percent		
NH_3	case by case		
СО	case by case		
Air Contaminants	Emission Facto	ors	
thermal NO_{x}	steam-assist:	high Btu low Btu	0.0485 lb/MMBtu 0.068 lb/MMBtu
	other:	high Btu low Btu	0.138 lb/MMBtu 0.0641 lb/MMBtu
fuel NO _x	NO_x is 0.5 wt percent of inlet NH_3 , other fuels case by case		
СО	steam-assist:	high Btu Iow Btu	0.3503 lb/MMBtu 0.3465 lb/MMBtu
	other:	high Btu low Btu	0.2755 lb/MMBtu 0.5496 lb/MMBtu
PM	none, required to	o be smokeless	
SO_2	100 percent S in	fuel to SO ₂	

TABLE 1.4-2. EMISSION FACTORS FOR CRITERIA POLLUTANTS AND GREENHOUSE GASES FROM NATURAL GAS COMBUSTION^a

Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
CO ₂ ^b	120,000	A
Lead	0.0005	D
N ₂ O (Uncontrolled)	2.2	Е
N ₂ O (Controlled-low-NO _X burner)	0.64	E
PM (Total) ^c	7.6	D
PM (Condensable) ^c	5.7	D
PM (Filterable) ^c	1.9	В
SO_2^{-d}	0.6	A
TOC	11	В
Methane	2.3	В
VOC	5.5	C

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from lb/10⁶ scf to 1b/MMBtu, divide by 1,020. The emission factors in this table may be converted to other natural gas heating values by multiplying the given emission factor by the ratio of the specified heating value to this average heating value. TOC = Total Organic Compounds. VOC = Volatile Organic Compounds.

^b Based on approximately 100% conversion of fuel carbon to CO_2 . $CO_2[lb/10^6 \text{ scf}] = (3.67)$ (CON) (C)(D), where CON = fractional conversion of fuel carbon to CO_2 , C = carbon content of fuel by weight (0.76), and D = density of fuel, $4.2 \times 10^4 \text{ lb}/10^6 \text{ scf}$.

^c All PM (total, condensible, and filterable) is assumed to be less than 1.0 micrometer in diameter. Therefore, the PM emission factors presented here may be used to estimate PM₁₀, PM_{2.5} or PM₁ emissions. Total PM is the sum of the filterable PM and condensible PM. Condensible PM is the particulate matter collected using EPA Method 202 (or equivalent). Filterable PM is the particulate matter collected on, or prior to, the filter of an EPA Method 5 (or equivalent) sampling train.

d Based on 100% conversion of fuel sulfur to SO₂.

Assumes sulfur content is natural gas of 2,000 grains/10⁶ scf. The SO₂ emission factor in this table can be converted to other natural gas sulfur contents by multiplying the SO₂ emission factor by the ratio of the site-specific sulfur content (grains/10⁶ scf) to 2,000 grains/10⁶ scf.

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION $^{\rm a}$

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ scf)	Emission Factor Rating
91-57-6	2-Methylnaphthalene ^{b, c}	2.4E-05	D
56-49-5	3-Methylchloranthrene ^{b, c}	<1.8E-06	Е
	7,12-Dimethylbenz(a)anthracene ^{b,c}	<1.6E-05	Е
83-32-9	Acenaphthene ^{b,c}	<1.8E-06	Е
203-96-8	Acenaphthylene ^{b,c}	<1.8E-06	Е
120-12-7	Anthracene ^{b,c}	<2.4E-06	Е
56-55-3	Benz(a)anthracene ^{b,c}	<1.8E-06	Е
71-43-2	Benzene ^b	2.1E-03	В
50-32-8	Benzo(a)pyrene ^{b,c}	<1.2E-06	Е
205-99-2	Benzo(b)fluoranthene ^{b,c}	<1.8E-06	Е
191-24-2	Benzo(g,h,i)perylene ^{b,c}	<1.2E-06	Е
205-82-3	Benzo(k)fluorantheneb,c	<1.8E-06	Е
106-97-8	Butane	2.1E+00	Е
218-01-9	Chrysene ^{b,c}	<1.8E-06	Е
53-70-3	Dibenzo(a,h)anthraceneb,c	<1.2E-06	Е
25321-22-6	Dichlorobenzene ^b	1.2E-03	Е
74-84-0	Ethane	3.1E+00	Е
206-44-0	Fluoranthene ^{b,c}	3.0E-06	Е
86-73-7	Fluorene ^{b,c}	2.8E-06	Е
50-00-0	Formaldehyde ^b	7.5E-02	В
110-54-3	Hexane ^b	1.8E+00	Е
193-39-5	Indeno(1,2,3-cd)pyrene ^{h,c}	<1.8E-06	Е
91-20-3	Naphthalene ^b	6.1E-04	Е
109-66-0	Pentane	2.6E+00	Е
85-01-8	Phenanathrene ^{b,c}	1.7E-05	D

TABLE 1.4-3. EMISSION FACTORS FOR SPECIATED ORGANIC COMPOUNDS FROM NATURAL GAS COMBUSTION (Continued)

CAS No.	Pollutant	Emission Factor (lb/10 ⁶ sef)	Emission Factor Rating
74-98-6	Propane	1.6E+00	E
129-00-0	Pyrene ^{b, c}	5.0E-06	E
108-88-3	Toluene ^b	3.4E-03	С

^a Reference 11. Units are in pounds of pollutant per million standard cubic feet of natural gas fired. Data are for all natural gas combustion sources. To convert from lb/10⁶ scf to kg/10⁶ m³, multiply by 16. To convert from 1b/10⁶ scf to lb/MMBtu, divide by 1,020. Emission Factors preceded with a less-than symbol are based on method detection limits.

b Hazardous Air Pollutant (HAP) as defined by Section 112(b) of the Clean Air Act.

^c HAP because it is Polycyclic Organic Matter (POM). POM is a HAP as defined by Section 112(b) of the Clean Air Act.

^d The sum of individual organic compounds may exceed the VOC and TOC emission factors due to differences in test methods and the availability of test data for each pollutant.

SITE DATA

OIL & GAS STANDARD PERMIT REGISTRATION GENELLE UNIT A1 AND B1

BURLINGTON RESOURCES OIL & GAS COMPANY LP

Representative Analyses: Yanta North #1 and Laird B1

Stream Compositions:

	Strea	am 1	Stre	am 2	Strea	am 3	Strea	am 4
	Inlet	Gas	Flare As	ssist Gas	LP Con	densate	Produce	d Water
Component	mole %	wgt. %	mole %	wgt. %	mole %	wgt. %	mole %	wgt %
Nitrogen	0.040%	0.038%	0.164%	0.202%	0.083%	0.021%	0.001%	0.001%
Carbon Dioxide	1.380%	2.064%	2.163%	4.184%	0.054%	0.021%	0.001%	0.002%
Water	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	99.000%	94.081%
Hydrogen Sulfide	0.0150%	0.017%	0.015%	0.022%	0.000%	0.000%	0.000%	0.000%
Methane	51.655%	28.162%	75.685%	53.363%	1.451%	0.207%	0.015%	0.013%
Ethane	20.842%	21.298%	11.765%	15.548%	2.300%	0.616%	0.023%	0.037%
Propane	13.702%	20.533%	4.689%	9.087%	4.295%	1.688%	0.043%	0.100%
I-Butane	2.466%	4.871%	0.899%	2.296%	1.537%	0.796%	0.015%	0.046%
N-Butane	5.021%	9.918%	1.663%	4.248%	4.592%	2.379%	0.046%	0.141%
I-Pentane	1.515%	3.715%	0.652%	2.067%	3.054%	1.964%	0.031%	0.118%
N-Pentane	1.467%	3.597%	0.623%	1.975%	3.942%	2.535%	0.039%	0.148%
Cyclopentane	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
n-Hexane	0.478%	1.400%	0.279%	1.057%	2.644%	2.031%	0.026%	0.118%
Cyclohexane	0.157%	0.460%	0.137%	0.519%	0.773%	0.594%	0.008%	0.036%
Other Hexanes	0.828%	2.425%	0.517%	1.958%	3.433%	2.637%	0.034%	0.155%
Heptanes	0.291%	0.991%	0.347%	1.528%	7.087%	6.329%	0.071%	0.375%
Octanes	0.029%	0.113%	0.109%	0.547%	6.303%	6.417%	0.063%	0.380%
Nonanes	0.011%	0.048%	0.058%	0.327%	5.216%	5.963%	0.052%	0.352%
Decanes Plus	0.000%	0.000%	0.014%	0.088%	48.611%	61.653%	0.486%	3.648%
Benzene	0.046%	0.122%	0.034%	0.117%	0.252%	0.175%	0.003%	0.012%
Toluene	0.061%	0.191%	0.132%	0.534%	1.346%	1.105%	0.013%	0.063%
Ethylbenzene	0.002%	0.007%	0.006%	0.028%	0.453%	0.429%	0.005%	0.028%
Xylene	0.009%	0.032%	0.065%	0.303%	2.577%	2.439%	0.026%	0.146%
Totals	100.02%	100.00%	100.02%	100.00%	100.003%	100.00%	100.001%	100.00%
Totals (C3+)		48.42%		26.68%		99.13%		5.87%
VOC max (%)		50.00%		30.00%		100.00%		10.00%
Benzene Max (%)		0.18%		0.18%		0.26%		0.02%
Higher Heating Value (Btu/scf)	1703		1315					
Lower Heating Value (Btu/scf)	1674		1292					
Specific Gravity	1.0224				0.7785			

SGS LABORATORY REFERENCE NUMBER: 6882-250891

Conoco Phillips

ID: Yanta North 1 LINE PRESSURE: 52 PSI AREA: Eagleford LINE TEMPERATURE: 128 F METER: LP Upstream of Compressor CYLINDER NUMBER: \$N0074

EFFECTIVE DATE:

LEASE:

OPERATOR: SAMPLED BY: Robert Hester STATION: ANALYZED BY: Kerry Quave SAMPLE DATE: 12/14/2011 ANALYZED DATE: 12/22/2011 SAMPLE OF: Gas SAMPLE TYPE: Spot

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.con/terms and conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Ph	vsical	Properties	per	GPA	21	45-0	19
----	--------	-------------------	-----	------------	----	------	----

Physical Properties per GPA 2	145-09	1	Calculations per GPA 2286-03
Note: Zero = Less than detection limit	MOL%	WEIGHT%	GPM @ 14.696
NITROGEN CARBON DIOXIDE METHANE ETHANE ETHANE PROPANE ISOBUTANE N-BUTANE ISOPENTANE N-PENTANE HEXANES HEPTANES PLUS	0.040 1.380 51.655 20.842 13.702 2.466 5.021 1.515 1.467 1.213 0.699	0.038 2.065 28.175 21.307 20.542 4.873 9.922 3.716 3.599 3.553 2.210	5.600 3.792 0.811 1.590 0.557 0.534 0.501 0.273 13.658
BTU @ 14.696 PSIA (DRY) BTU @ 14.696 PSIA (SAT.)	Vol. IDEAL Vol. Real Gas Fuel Gas Fuel 1690.9 1703.0 1661.4 1674.1		
2.0 (3.71.000) 0.77 (0.711.)	10111		

Gasoline Content (Gallons Per	<u>Гhousand - GPM)</u>	Secondary BTU Psia Base	Vol. ID
BTU @ 14.696 PSIA (SAT.) Specific Gravity Compressibility (Z)	1661.4 1674.1 1.0155 1.0224 0.9929		
BTU @ 14.696 PSIA (DRY)	1690.9 1703.0		

)	Secondary BTU Psia Base	Vol. IDEAL	Vol. Real
		Gas Fuel	Gas Fuel
13.385	BTU @ 15.025 PSIA (DRY)	1728.7	1741.4
7.785	BTU @ 15.025 PSIA (SAT.)	1698.6	1711.9
3.993			
1.592	Compressibility (Z) at 15.025 =	0.9927	
2.868			
	13.385 7.785 3.993 1.592	13.385 BTU @ 15.025 PSIA (DRY) 7.785 BTU @ 15.025 PSIA (SAT.) 3.993 1.592 Compressibility (Z) at 15.025 =	Gas Fuel 13.385 BTU @ 15.025 PSIA (DRY) 1728.7 7.785 BTU @ 15.025 PSIA (SAT.) 1698.6 3.993 1.592 Compressibility (Z) at 15.025 = 0.9927

Remarks: Remarks:

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, If any, The Company's solo responsibility is to its Client and this document does not exponents parties to a transaction from exercising all their rights and obligations under the transaction documents Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and effenders may be prosecuted to the fullest extent of the law.

COMPANY: Conoco Phillips AREA / FIELD: Eagleford

LEASE:

	MOL%	WEIGHT%	GPM @ 14.696
NITROGEN	0.040	0.038	0.004
CARBON DIOXIDE	1.380	2.065	0.237
METHANE	51.655	28.175	8.797
ETHANE	20.842	21.307	5.600
PROPANE	13.702	20.542	3.792
ISOBUTANE	2.466	4.873	0.811
N-BUTANE	5.021	9.922	1.590
ISOPENTANE	1.515	3.716	0.557
N-PENTANE	1.467	3.599	0.534
2,2-Dimethylbutane	0.042	0.122	0.017
2,3-Dimethylbutane & Cyclopentane	0.000	0.000	0.000
2-Methylpentane	0.478	1.401	0.199
3-Methylpentane	0.215	0.630	0.088
n-Hexane	0.478	1.400	0.197
2,2-Dimethylpentane	0.011	0.037	0.005
Methylcyclopentane	0.093	0.266	0.033
2,4-Dimethylpentane	0.001	0.003	0.000
2,2,3- Trimethylbutane	0.000	0.000	0.000
Benzene	0.046	0.122	0.013
3,3-Dimethylpentane	0.000	0.000	0.000
Cyclohexane	0.157	0.449	0.054
2-Methylhexane	0.013	0.044	0.006
2,3-Dimethylpentane	0.068	0.232	0.031
1,1-Dimethylcyclopentane	0.000	0.000	0.000
3-Methylhexane	0.010	0.034	0.005
I,t-3-Dimethylcyclopentane	0.006	0.020	0.002
1,c-3-Dimethylcyclopentane & 3-Ethylpentane	0.008	0.027	0.003
I,t-2-Dimethylcyclopentane & 2,2,4- Trimethylpentane	0.000	0.000	0.000
n-Heptane	0.105	0.358	0.049
Methylcyclohexane	0.068	0.227	0.027
1,1,3- Trimethylcyclopentane & 2,2-Dimethylhexane	0.001	0.004	0.000
2,5-Dimethylhexane & 2,4-Dimethylhexane	0.002	0.008	0.001
Ethylcyclopentane	0.001	0.003	0.000
2,2,3- Trimethylpentane & 1,t-2,c-4- Trimethylcyclopentane	0.000	0.000 0.000	0.000 0.000
3,3-Dimethylhexane & 1,t-2,c-3- Trimethylcyclopentane	0.000		
2,3,4- Trimethylpentane & 2,3.Dimethylhexane	0.000 0.061	0.000	0.000
Toluene		0.191	0.021
1,1,2- Trimethylcyclopentane	0.000	0.000	0.000
3,4-Dimethylhexane	0.000 0.010	0.000	0.000
2-Methylheptane		0.039	0.005
4-Methylheptane	0.000	0.000	0.000
1,c-2,t-4- Trimethylcyclopentane	0.000	0.000	0.000
3-Methylheptane & 3,4-Dimethylhexane	0.002	0.008	0.001

SAMPLE DATE: #######

LEASE:

	MOL%	WEIGHT%	GPM @ 14.696
1,c-3-Dimethylcyclohexane & 3-Ethylhexane	0.000	0.000	0.000
I,t-4-Dimethylcyclohexane & 1,c2,t3- Trimethylcyclopentane	0.000	0.000	0.000
2,2,5-Trimethylhexane & 1,1-Dimethylcyclohexane	0.000	0.000	0.000
Methyl-Ethylcyclopentane's & 2,2,4- Trimethylhexane	0.007	0.027	0.003
n-Octane	0.012	0.047	0.006
1,t2 Dimethylcyclohexane & 2,2,4,4- Tetramethylpentane	0.000	0.000	0.000
1,t-3-Dimethylcyclohexane & 1,c-4-Dimethylcyclohexane	0.001	0.004	0.000
Dimethylheptanes & 1 ,c-2,c-3- Trimethylcyclopentane	0.001	0.004	0.000
Isopropylcyclopentane	0.000	0.000	0.000
Dimethylheptanes & Trimethylhexanes	0.001	0.004	0.001
1,c-2-Dimethylcyclohexane	0.000	0.000	0.000
Dimethylheptanes	0.001	0.004	0.001
Ethylcyclohexane	0.000	0.000	0.000
n-Propylcyclopentane	0.000	0.000	0.000
Trimethylcyclohexanes	0.000	0.000	0.000
Ethylbenzene	0.002	0.007	0.001
Dimethylheptanes & Trimethylhexanes	0.000	0.000	0.000
m-Xylene & p-Xylene	0.002	0.007	0.001
2 & 4 Methyloctane & 3,4-Dimethylheptane	0.000	0.000	0.000
Trimethylcyclohexanes	0.000	0.000	0.000
3-Methyloctane	0.000	0.000	0.000
Trimethylcyclohexanes	0.000	0.000	0.000
o-Xylene	0.007	0.025	0.003
Trimethylcyclohexanes & Isobutylcyclopentane	0.000	0.000	0.000
n-Nonane	0.002	0.009	0.001
C9 Naphthenes & C10 Paraffins & Trimethylcyclohexanes	0.000	0.000	0.000
Isopropylbenzene & Trimethylcyclohexanes	0.000	0.000	0.000
C9 Naphthenes & C10 Paraffins	0.000	0.000	0.000
Isopropylcyclohexane	0.000	0.000	0.000
C9 Naphthenes & C10 Paraffins & Cyclooctane	0.000	0.000	0.000
N-Propylcyclohexane	0.000	0.000	0.000
C9 Naphthenes & C10 Paraffins & n-Butylcyclopentane	0.000	0.000	0.000
n-Propylbenzene	0.000	0.000	0.000
C9 Naphthenes & C10 Paraffins & EthylBenzenes	0.000	0.000	0.000
m-Ethyltoluene	0.000	0.000	0.000
p-Ethyltoluene	0.000	0.000	0.000
1,3,5- Trimethylbenzene & 4 & 5 Methylnonane	0.000	0.000	0.000
2-Methylnonane & 3-Ethyloctane	0.000	0.000	0.000
C9 Naphthenes & C10 Paraffins	0.000	0.000	0.000
O-Ethyltoluene & 3-Methylnonane	0.000	0.000	0.000
C9 Naphthenes & C10 Paraffins	0.000	0.000	0.000
tert-Butylbenzene	0.000	0.000	0.000
1,2,4 Trimethylbenzene & Methylcyclooctane	0.000	0.000	0.000
Isobutylcyclohexane & tert- Butylcyclohexane	0.000	0.000	0.000
n-Decane Plus	0.000	0.000	0.000
	100.000	100.000	22.696

EFSCOP00008830

LEASE:

<u>Calculated Value</u>	Total Sample	Heptanes Plus
Molecular Weight	29.413	93.021
Relative Density	0.4126	0.7547
Liquid Density (Ibs/gal Absolute Density)	3.440	6.292
Liquid Density (Ibs/gal Weight in Air)	3.437	6.286
Cu.Ft./Vapor / Gal. @ 14.696	44.383	25.669
Vapor Pressure @ 100° F	2780.360	0.890
API Gravity at 60° F	211.4	56.0
BTU / LB	21816	7725
BTU / GAL.	75026	44758
BTU / Cu. FT. (Vol. IDEAL Gas Fuel @ 14.696)	1690.9	4938.0
Specific Gravity as a Vapor @ 14.696	1.0155	1.1744

Heavy End Grouping Breakdown						
HEXANES HEPTANES OCTANES NONANES DECANES+	C6 C7 C8 C9 C10	1.213 0.518 0.164 0.017 0.000				
	Total	1.912 Mol%				

BTEX BREAKDOWN						
	Mol%	WT.%				
BENZENE TOLUENE ETHYLBENZENE XYLENES	0.046 0.061 0.002 0.009	0.122 0.191 0.007 0.032				
Total BTEX	0.118	0.352				

SGS LABORATORY REFERENCE NUMBER: 6882-250891

Conoco Phillips

ID: Yanta North 1 LINE PRESSURE: 52 PSI
AREA: Eagleford LINE TEMPERATURE: 128 F
METER: LP Upstream of Compressor CYLINDER NUMBER: SN0074

EFFECTIVE DATE:

LEASE:

OPERATOR: SAMPLED BY: Robert Hester STATION: ANALYZED BY: Kerry Quave SAMPLE DATE: 12/14/2011 ANALYZED DATE: 12/22/2011 SAMPLE OF: Gas SAMPLE TYPE: Spot

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

The Company's solo responsibility is to its Client and this document does not exponents parties to a transaction from exercising all their rights and obligations under the transaction documents Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and effenders may be prosecuted to the fullest extent of the law.

Calculations per GPA 2286-03

Note: Zero = Less than detection limit	1	MOL%	WEIGHT%	GPM @ 14.696
NITROGEN CARBON DIOXIDE METHANE ETHANE PROPANE ISOBUTANE N-BUTANE ISOPENTANE N-PENTANE HEXANE HEPTANE OCTANE NONANE DECANE+	2	0.040 1.380 51.655 20.842 13.702 2.466 5.021 1.515 1.467 1.213 0.518 0.164 0.017 0.000	0.038 2.065 28.175 21.307 20.542 4.873 9.922 3.716 3.599 3.553 1.592 0.554 0.064 0.000	5.600 3.792 0.811 1.590 0.557 0.534 0.501 0.201 0.064 0.008 0.000
	10	00.000	100.000	13.658
BTU @ 14.696 PSIA (DRY) BTU @ 14.696 PSIA (SAT.) Specific Gravity Compressibility (Z)	Gas Fuel Ga 1690.9 1 1661.4 1	I. Real s Fuel 1703.0 1674.1 1.0224		
Gasoline Content (Gallons Per Th	nousand - GPM)		Secondary BTU Psia Base	Vol. IDEAL Vol. Real
Ethane & Heavier Propane & Heavier Butane & Heavier	1	13.385 7.785 3.993	BTU @ 15.025 PSIA (DRY) BTU @ 15.025 PSIA (SAT.)	Gas Fuel Gas Fuel 1728.7 1741.4 1698.6 1711.9
Pentane & Heavier Total 26 psi Reid V.P. Gasoline G	PM	1.592 2.868	Compressibility (Z) at 15.025	= 0.9927

Remarks:

Precision parantes apply has determination of above test results. Also refer to ASTM D 3244-97/02, IP 367/96 and appendix E of IP standard methods for analysis and testing for utilization of test data to determine conformance with specifications.

PDF created with pdfractory Pro trial version www.pdffactory.com

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any

SGS LABORATORY
COMPANY: Conoco Phillips
AREA/ FIELD: Eagleford

Sample Container	Sample Description	Sample Point	Sample Time	<u>Matrix</u>	RVP by D	Sample Pressue.	Sample
Cylinder Type/No.or Bottle	Field/Locations.Well		Date, hours		<u>5191</u>	psi	Temp, F
Station No. 74144 (1)	Yanta North #1	LP Separator before Dump Valve	12-14-2011 @ 10:15 AM	Condensate	6.67psi	50 psi	130F

Chromatogra	aphic Extended Analys	sis - Summation Report	t
Component	Mol%	<u>Liq Vol%</u>	Wt%
Nitrogen	0.083	0.014	0.015
Carbon Dioxide	0.054	0.014	0.015
Methane	1.451	0.377	0.145
Ethane	2.300	0.943	0.432
Propane Isobutane	4.295	1.814	1.182
N-Butane	1.537 4.592	0.771 2.219	0.557 1.665
2,2 Dimethylpropane	0.037	0.022	0.017
IsoPentane	3.054	1.712	1.375
n-Pentane	3.905	2.170	1.758
2,2 Dimethylbutane	0.086	0.055	0.046
2,2 2.111.0 213/10 212/10	0.000	0.000	0.0.0
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.304	0.191	0.164
2 Methylpentane	1.540	0.980	0.828
3 Methylpentane	0.982	0.614	0.528
n-Hexane	2.644	1.667	1.422
Heptanes ⊃lus	73.135	86.436	89.851
Total	100.000	100.000	100.000
	Total Extended R	Penort	
Component	Mol%	Liq Vol%	Wt%
Nitrogen	0.083	0.014	0.015
Carbon Dioxide	0.083	0.014	0.015
Methane	1.451	0.377	0.145
Ethane	2.300	0.943	0.432
Propane	4.295	1.814	1.182
Isobutane	1.537	0.771	0.557
N-Butane	4.592	2.219	1.665
2,2 Dimethylpropane	0.037	0.022	0.017
IsoPentane	3.054	1.712	1.375
n-Pentane	3.905	2.170	1.758
2,2 Dimethylbutane	0.086	0.055	0.046
Cyclopentane	0.000	0.000	0.000
2,3 Dimethylbutane	0.304	0.191	0.164
2 Methylpentane	1.540	0.980	0.828
3 Methylpentane	0.982	0.614	0.528
n-Hexane	2.644	1.667	1.422
Methyl cyclopentane	0.521	0.282	0.273
Benzene	0.252	0.108	0.123
Cyclohexame	0.773	0.403	0.406
2-Methylhexane	1.004	0.716	0.628
3-Methylhexane	0.999	0.703	0.625
2,2,4 Trimethylpentane	0.000	0.000	0.000
Other C-7's	1.003	0.692	0.621
n-Heptane	2.472	1.748	1.546
Methylcyclohexane	1.609	0.991	0.986
Toluene	1.346	0.691	0.774
Other C-8's	4.064	3.017	2.795
n-Octane	2.239	1.758	1.596
L-Benzene	0.453	0.268	0.300
M & P Xylenes	1.967	1.170	1.303
O-Xylene	0.610	0.356	0.404
Other C-9's	3.354	2.781	2.642
n-Nonane	1.862	1.606	1.490
Other C-10's	4.866	4.435	4.290
n-Decane	1.627	1.531	1.444
Undecanes (11)	5.222	4.883	4.791
Dodecanes (12)	4.236	4.278	4.255
Tridecanes (13)	4.012	4.345	4.381
Tetradecanes (14)	3.431	3.979	4.067
Pentadecanes (15)	3.083	3.831	3.964
Hexadecanes (16)	2.510	3.332	3.476
Heptadecanes (17) Octadecanes (18)	2.279 2.096	3.200 3.098	3.370 3.282
	1.918	2.953	3.147
Nonadecanes (19) Eicosanes (20)	1.593	2.550	2.733
Heneicosanes (21)	1.367	2.302	2.482
Docosanes (22)	1.275	2.237	2.426
Tricosanes (23)	1.124	2.046	2.231
Tetracosanes (24)	0.997	1.880	2.231
Pentacosanes (24)	0.876	1.715	1.887
Hexacosanes (26)	0.804	1.629	1.801
Hexacosanes (20)	0.706	1.485	1.649
Octacosanes (27)	0.706	1.485	1,649
			1.493
Nonacosanes (29) Triacon:anes (30)	0.580 0.439	1.302 1.016	1.455
Hentriacontanes Plus (31+)	2.953	9.777	11.517
Total	100.000	100.000	100.000
rotal	100.000	100.000	100.000

Characteristics of	Heptanes Plu	S
Specific Gravity	0.8092	(Water = 1)
API Gravity	43.36	@60 F
Molecular Weigh:	196.9	
Vapor Volume	13.05	CF/Gal
Weight	6.74	Lbs/Gal
Characteristics of Specific Gravity	0.7785	(Water = 1)
API Gravity	50.27	@60 F
Molecular Weigh:	160.3	
Manager	100.5	
Vapor Volume	15.42	CF/Gal

SGS LABORATORY REFERENCE NUMBER: 6894-250891

Conoco Phillips

ID: Laird B1 LINE PRESSURE: 1060 PSI AREA: Eagleford LINE TEMPERATURE: 112 F CYLINDER NUMBER: 0110 METER: High Pressure Separator

EFFECTIVE DATE: LEASE:

OPERATOR: SAMPLED BY: Robert Hester STATION: ANALYZED BY: Kerry Quave SAMPLE DATE: 12/20/2011 ANALYZED DATE: 12/24/2011 SAMPLE OF: Gas SAMPLE TYPE: Spot

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.con/terms and conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Physical Properties per GPA 2145-09				Calculations per GPA 2286-03
Note: Zero = Less than detection limit		MOL%	WEIGHT%	GPM @ 14.696
NITROGEN CARBON DIOXIDE METHANE ETHANE PROPANE ISOBUTANE N-BUTANE ISOPENTANE N-PENTANE HEXANES HEPTANES PLUS		0.164 2.163 75.685 11.765 4.689 0.899 1.663 0.652 0.623 0.733 0.964	0.202 4.187 53.403 15.559 9.094 2.298 4.251 2.069 1.977 2.778 4.182	3.151 1.294 0.295 0.525 0.239 0.226 0.302 0.396
BTU @ 14.696 PSIA (DRY) BTU @ 14.696 PSIA (SAT.) Specific Gravity Compressibility (Z)	Gas Fuel 1310.2 1287.3	Vol. Real Gas Fuel 1315.3 1292.9 0.7878		

Compressibility (Z) 0	.9961			
Gasoline Content (Gallons Per Thousand - GPM)		Secondary BTU Psia Base	Vol. IDEAL	_ Vol. Real
			Gas Fuel	Gas Fuel
Ethane & Heavier	6.032	BTU @ 15.025 PSIA (DRY)	1339.5	1344.8
Propane & Heavier	2.881	BTU @ 15.025 PSIA (SAT.)	1316.1	1321.9
Butane & Heavier	1.587			
Pentane & Heavier	0.767	Compressibility (Z) at 15.025 =	0.9960	

1.791

Remarks:

Total 26 psi Reid V.P. Gasoline GPM

Remarks:

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, If any

The Company's solo responsibility is to its Client and this document does not exponents parties to a transaction from exercising all their rights and obligations under the transaction documents Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and effenders may be prosecuted to the fullest extent of the law.

COMPANY: Conoco Phillips AREA / FIELD: Eagleford

LEASE:

	MOL%	WEIGHT%	GPM @ 14.696
NITROGEN	0.164	0.202	0.018
CARBON DIOXIDE	2.163	4.187	0.370
METHANE	75.685	53.403	12.848
ETHANE	11.765	15.559	3.151
PROPANE	4.689	9.094	1.294
ISOBUTANE	0.899	2.298	0.295
N-BUTANE	1.663	4.251	0.525
ISOPENTANE	0.652	2.069	0.239
N-PENTANE	0.623	1.977	0.226
2,2-Dimethylbutane	0.025	0.093	0.010
2,3-Dimethylbutane & Cyclopentane	0.000	0.000	0.000
2-Methylpentane	0.248	0.940	0.103
3-Methylpentane	0.182	0.688	0.074
n-Hexane	0.279	1.057	0.115
2,2-Dimethylpentane	0.009	0.040	0.004
Methylcyclopentane	0.062	0.229	0.022
2,4-Dimethylpentane	0.001	0.004	0.000
2,2,3- Trimethylbutane	0.000	0.000	0.000
Benzene	0.034	0.117	0.010
3,3-Dimethylpentane	0.000	0.000	0.000
Cyclohexane	0.137	0.507	0.047
2-Methylhexane	0.012	0.053	0.006
2,3-Dimethylpentane	0.071	0.313	0.032
1,1-Dimethylcyclopentane	0.000	0.000	0.000
3-Methylhexane	0.010	0.044	0.005
I,t-3-Dimethylcyclopentane	0.006	0.026	0.002
1,c-3-Dimethylcyclopentane & 3-Ethylpentane	0.009	0.039	0.004
I,t-2-Dimethylcyclopentane & 2,2,4- Trimethylpentane	0.000	0.000	0.000
n-Heptane	0.135	0.595	0.062
Methylcyclohexane	0.092	0.397	0.037
1,1,3- Trimethylcyclopentane & 2,2-Dimethylhexane	0.003	0.015	0.001
2,5-Dimethylhexane & 2,4-Dimethylhexane	0.005	0.025	0.003
Ethylcyclopentane	0.002	0.009	0.001
2,2,3- Trimethylpentane & 1,t-2,c-4- Trimethylcyclopentane	0.000	0.000	0.000
3,3-Dimethylhexane & 1,t-2,c-3- Trimethylcyclopentane	0.000	0.000	0.000
2,3,4- Trimethylpentane & 2,3.Dimethylhexane	0.000	0.000	0.000
Toluene	0.132	0.535	0.044
1,1,2- Trimethylcyclopentane	0.000	0.000	0.000
3,4-Dimethylhexane	0.000	0.000	0.000
2-Methylheptane	0.033	0.166	0.017
4-Methylheptane	0.000	0.000	0.000
1,c-2,t-4- Trimethylcyclopentane	0.000	0.000	0.000
3-Methylheptane & 3,4-Dimethylhexane	0.002	0.010	0.001

SAMPLE DATE: #######

LEASE:

	MOL%	WEIGHT%	GPM @ 14.696
1,c-3-Dimethylcyclohexane & 3-Ethylhexane	0.000	0.000	0.000
I,t-4-Dimethylcyclohexane & 1,c2,t3- Trimethylcyclopentane	0.000	0.000	0.000
2,2,5-Trimethylhexane & 1,1-Dimethylcyclohexane	0.000	0.000	0.000
Methyl-Ethylcyclopentane's & 2,2,4- Trimethylhexane	0.017	0.084	0.008
n-Octane	0.057	0.286	0.029
1,t2 Dimethylcyclohexane & 2,2,4,4- Tetramethylpentane	0.000	0.000	0.000
1,t-3-Dimethylcyclohexane & 1,c-4-Dimethylcyclohexane	0.004	0.020	0.002
Dimethylheptanes & 1 ,c-2,c-3- Trimethylcyclopentane	0.002	0.010	0.001
Isopropylcyclopentane	0.003	0.015	0.001
Dimethylheptanes & Trimethylhexanes	0.006	0.033	0.003
1,c-2-Dimethylcyclohexane	0.000	0.000	0.000
Dimethylheptanes	0.007	0.039	0.004
Ethylcyclohexane	0.000	0.000	0.000
n-Propylcyclopentane	0.000	0.000	0.000
Trimethylcyclohexanes	0.000	0.000	0.000
Ethylbenzene	0.006	0.028	0.002
Dimethylheptanes & Trimethylhexanes	0.002	0.011	0.001
m-Xylene & p-Xylene	0.019	0.089	0.007
2 & 4 Methyloctane & 3,4-Dimethylheptane	0.000	0.000	0.000
Trimethylcyclohexanes	0.000	0.000	0.000
3-Methyloctane	0.002	0.011	0.001
Trimethylcyclohexanes	0.000	0.000	0.000
o-Xylene	0.046	0.215	0.018
Trimethylcyclohexanes & Isobutylcyclopentane	0.000	0.000	0.000
n-Nonane	0.020	0.113	0.011
C9 Naphthenes & C10 Paraffins & Trimethylcyclohexanes	0.001	0.006	0.001
Isopropylbenzene & Trimethylcyclohexanes	0.001	0.005	0.000
C9 Naphthenes & C10 Paraffins	0.001	0.006	0.001
Isopropylcyclohexane	0.002	0.011	0.001
C9 Naphthenes & C10 Paraffins & Cyclooctane	0.002	0.010	0.001
N-Propylcyclohexane	0.001	0.006	0.001
C9 Naphthenes & C10 Paraffins & n-Butylcyclopentane	0.003	0.019	0.002
n-Propylbenzene	0.003	0.016	0.001
C9 Naphthenes & C10 Paraffins & EthylBenzenes	0.000	0.000	0.000
m-Ethyltoluene	0.000	0.000	0.000
p-Ethyltoluene	0.000	0.000	0.000
1,3,5- Trimethylbenzene & 4 & 5 Methylnonane	0.000	0.000	0.000
2-Methylnonane & 3-Ethyloctane	0.000	0.000	0.000
C9 Naphthenes & C10 Paraffins	0.000	0.000	0.000
O-Ethyltoluene & 3-Methylnonane	0.000	0.000	0.000
C9 Naphthenes & C10 Paraffins	0.000	0.000	0.000
tert-Butylbenzene	0.000	0.000	0.000
1,2,4 Trimethylbenzene & Methylcyclooctane	0.000	0.000	0.000
Isobutylcyclohexane & tert- Butylcyclohexane	0.000	0.000	0.000
n-Decane Plus	0.004	0.025	0.002
	100.000	100.000	19.664
	100.000	100.000	10.007

LEASE:

Calculated Value	Total Sample	Heptanes Plus
Molecular Weight	22.736	98.624
Relative Density	0.3670	0.7618
Liquid Density (lbs/gal Absolute Density)	3.060	6.351
Liquid Density (Ibs/gal Weight in Air)	3.057	6.345
Cu.Ft./Vapor / Gal. @ 14.696	51.074	24.437
Vapor Pressure @ 100° F	3889.010	1.010
API Gravity at 60° F	254.1	54.2
BTU / LB	21868	12034
BTU / GAL.	66890	72131
BTU / Cu. FT. (Vol. IDEAL Gas Fuel @ 14.696)	1310.2	5205.2
Specific Gravity as a Vapor @ 14.696	0.7850	1.9341

Heavy End Grouping Breakdown							
HEXANES HEPTANES OCTANES NONANES DECANES+	C6 C7 C8 C9 C10	0.733 0.486 0.343 0.117 0.018					
	Total	1.697 Mol%					

BTEX BREAKDOWN						
	Mol%	WT.%				
BENZENE	0.034	0.117				
TOLUENE	0.132	0.535				
ETHYLBENZENE	0.006	0.028				
XYLENES	0.065	0.304				
Total BTEX	0.237	0.984				

SGS LABORATORY REFERENCE NUMBER: 6894-250891

Conoco Phillips

ID: Laird B1 LINE PRESSURE: 1060 PSI
AREA: Eagleford LINE TEMPERATURE: 112 F
METER: High Pressure Separator CYLINDER NUMBER: 0110

LEASE: EFFECTIVE DATE:

OPERATOR: SAMPLED BY: Robert Hester STATION: ANALYZED BY: Kerry Quave SAMPLE DATE: 12/20/2011 ANALYZED DATE: 12/24/2011 SAMPLE OF: Gas SAMPLE TYPE: Spot

This document is issued by the Company under its General Conditions of Service accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

The Company's solo responsibility is to its Client and this document does not exponents parties to a transaction from exercising all their rights and obligations under the transaction documents Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and effenders may be prosecuted to the fullest extent of the law.

Physical	Properties	per GPA	2145-09
----------	-------------------	---------	---------

Calculations per GPA 2286-03

				<u>'</u>
Note: Zero = Less than detection limit		MOL%	WEIGHT%	GPM @ 14.696
NITROGEN CARBON DIOXIDE METHANE ETHANE PROPANE ISOBUTANE N-BUTANE ISOPENTANE N-PENTANE HEXANE HEPTANE OCTANE NONANE DECANE+		0.164 2.163 75.685 11.765 4.689 0.899 1.663 0.652 0.623 0.733 0.486 0.343 0.117 0.018	0.202 4.187 53.403 15.559 9.094 2.298 4.251 2.069 1.977 2.778 1.967 1.527 0.584 0.104	3.151 1.294 0.295 0.525 0.239 0.226 0.302 0.194 0.141 0.051 0.010
		100.000	100.000	6.428
BTU @ 14.696 PSIA (DRY) BTU @ 14.696 PSIA (SAT.) Specific Gravity Compressibility (Z)		Vol. Real Gas Fuel 1315.3 1292.9 0.7878		
Gasoline Content (Gallons Per Thousand - GPM)		<u>M)</u>	Secondary BTU Psia Base	Vol. IDEAL Vol. Real
Ethane & Heavier Propane & Heavier Butane & Heavier		6.032 2.881 1.587	BTU @ 15.025 PSIA (DRY) BTU @ 15.025 PSIA (SAT.)	Gas Fuel Gas Fuel 1339.5 1344.8 1316.1 1321.9
Pentane & Heavier Total 26 psi Reid V.P. Gasoline G	SPM	0.767 1.791	Compressibility (Z) at 15.025	= 0.9960

Remarks:

Precision parantes analyte to determination of above test results. Also refer to ASTM D 3244-97/02, IP 367/96 and appendix E of IP standard methods for analysis and testing for utilization of test data to determine conformance with specifications.

PDF created with pdf-actory Pro trial version www.pdffactory.com

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any

TITAN Engineering, Inc. 2801 Network Boulevard, Suite 200

2801 Network Boulevard, Suite 200 Frisco, Texas 75034 Phone: (469) 365-1100 Fax: (469) 365-1199 www.titanengineering.com • www.apexcos.com

A Division of Apex Companies, LLC 1

H2S METER READING AT SITE

Burlington Resources Oil & Gas Company LP
Standard Permit Registration
Genelle Unit A1 and B1
TITAN Project No. 84800507-71.003
September 2012

from USGS Quadrangle Helena, Texas Ground Condition Depicted October 2011 Digital Data Courtesy of ESRI Online Datasets